
Asymptotic Methods

Multiple scale techniques for PDEs: waves and
patterns



The Swift-Hohenberg equation

Seminal prototype for pattern formation (convection rolls, optical instabilities,
biological patterns,...)

ut = −(∆ + 1)2u + N(u).



Localized states of SH

Consider one dimensional steady state problem

0 = −(1 + ∂x)2u − εu + u3, u(±∞) = 0.

Complete bifurcation diagram is very complicated (Chapman & Kozyreff,
Physica D, 2009)

Simplest multiple scale solution: introduce slow scale y = εαx , so that u(x , y)
solves

uxxxx+4εαuxxxy+6ε2αuxxyy+4ε3αuxyyy+ε4αuyyyy+2uxx+4εαuxy+ε2αuyy = −εu+u3.

How to expand? expect nonlinear term u3 to emerge at same time εu does,
suggests

u = ε1/2u1 + εu2 + ε3/2u3 + . . .

Leading order problem is Lu ≡ (1 + ∂2
x )2u1 = 0, so

u1 = A(y) cos(x) + B(y) sin(x). For simplicity, set B = 0. Need A(±∞) = 0 to
satisfy side conditions.
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Localized states of SH, cont.

Order ε terms produce nothing consequential, and O(ε3/2) terms gives

Lu3 =

{
(−2A′′ − A + (3/4)A3) cos x , α 6= 1/2

(4A′′ − A + (3/4)A3) cos x , α = 1/2
+ non-secular terms.

Only the case α = 1/2 yields a system 4A′′ − A + (3/4)A3 = 0 with a
homoclinic orbit
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Pattern formation and the Ginzburg-Landau equation

Consider an abstract evolution equation for u(x , t) of the form

ut = Lµu + N(u), N(u) = O(u2).

Suppose the linearized equation ut = Lµu admits solutions ε(σt + ikx) with
σ = σ(k, µ) so that
(1) Re σ < 0 for all k if µ < 0, and
(2) exists wavenumber kc > 0 so Re σ(kc , µ) > 0 if µ > 0.

For example, L = µ− (1 + ∂2/∂x2)2 has σ = µ− (1− k2)2. Set µ = rε2,
kc = 1, so that unstable modes have form k = 1 + εK , where

K ∈ (−1

2

√
r ,

1

2

√
r) +O(ε),

and σ = ε2(r − 4K 2) +O(ε3).

How do unstable modes evolve?

u ∼ exp[i(1+εK)x+ε2(r−4K)2t] = exp(ix) exp[iK(εx)+(r−4K 2)(ε2t)] = A(εx , ε2t)e ix .

This suggests using a multiple scale ansatz u ∼ εαU(x ,X ,T ) where X = εx
and T = ε2t, with α determined by nonlinearity.

Goal: find amplitude evolution equation, known as the Ginzburg-Landau
equation.
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GL equation for Swift-Hohenberg

Consider dynamic SH equation

ut = µu − (1 + ∂2/∂x2)2 − u3, µ = rε2.

(note difference with steady-state problem: sign of r is positive here)
With multiple scale ansatz u = εU(x ,X ,T ), problem is

ε2UT = −Uxxxx−2Uxx−4εUxX−2ε2UXX−Uxxxx−4εUxxxX−6ε2UxxXX+rε2U−ε2U3+O(ε3)

Expanding in powers of ε, leading order problem is

−U0xxxx − 2U0xx − U0 ≡ L0U0 = 0,

whose solution is U0 = A(X ,T )e ix + c.c..

As in steady state analysis, nothing of consequence occurs at O(ε2), and at
order ε3, get

L0U2 = (AT − rA− 4AXX + 3|A|2A)e ix + c.c. + non-secular.

Result is Ginzburg-Landau equation

AT = 4AXX + rA− 3|A|2A,

describing propagation of pattern into unstable state.
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Amplitude equation for nonlinear waves

Consider “Sine -Gordon” equation

ψtt = c2ψxx − ω2
0 sinψ, −∞ < x <∞

The linearized equation ψtt = c2ψxx − ω2
0ψ has a dispersion relation

ω2 = ω2
0 + c2k2.

Here, we impose a slow modulation on an underlying wave of the form e ikx−iωt ,
which has scales X = εx , T1 = εt, and T2 = ε2t.

Expanding ψ ∼ εψ1 + ε2ψ2 + ε3ψ3 + . . ., leading order is

ψ1tt − c2ψ1xx + ω2
0ψ1 ≡ Lψ = 0.

Impose specific wavelength k, so ψ1 = A(X ,T1,T2)e ikx−iωt .
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Nonlinear waves cont.

For O(ε2), have

Lψ2 = (2iωAT1 + 2ic2kAX )e ikx−iωt + c.c.,

so to avoid secular terms,

AT1 + vgAX = 0, vg = c2k/ω = ω′(k).

In other words, amplitude propagates at group velocity. Solution to this
transport equation is A = (X − vgT1,T2).

For O(ε3), have

Lψ3 = (−AT1T12iωAT2 + c2AXX +
1

2
ω2
0 |A|2A)e ikx−iωt + c.c. + non-secular terms

so to avoid secular terms,

AT2 = − 1

2iω

(
(c2v 2

g )AXX +
1

2
ω2
0 |A|2A

)
=

i

2
ω′′(k)AXX +

i

4

ω2
0

ω
|A|2A.

This is the nonlinear Schrödinger equation; the term ω′′(k) is the group
velocity dispersion.
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