Asymptotic Methods

Multiple scale techniques for PDEs: waves and patterns

The Swift-Hohenberg equation

Seminal prototype for pattern formation (convection rolls, optical instabilities, biological patterns,...)

$$
u_{t}=-(\Delta+1)^{2} u+N(u)
$$

Localized states of SH

Consider one dimensional steady state problem

$$
0=-\left(1+\partial_{x}\right)^{2} u-\epsilon u+u^{3}, \quad u(\pm \infty)=0
$$

Complete bifurcation diagram is very complicated (Chapman \& Kozyreff, Physica D, 2009)

Localized states of SH

Consider one dimensional steady state problem

$$
0=-\left(1+\partial_{x}\right)^{2} u-\epsilon u+u^{3}, \quad u(\pm \infty)=0
$$

Complete bifurcation diagram is very complicated (Chapman \& Kozyreff, Physica D, 2009)
Simplest multiple scale solution: introduce slow scale $y=\epsilon^{\alpha} x$, so that $u(x, y)$ solves
$u_{x x x x}+4 \epsilon^{\alpha} u_{x x x y}+6 \epsilon^{2 \alpha} u_{x x y y}+4 \epsilon^{3 \alpha} u_{x y y y}+\epsilon^{4 \alpha} u_{y y y y}+2 u_{x x}+4 \epsilon^{\alpha} u_{x y}+\epsilon^{2 \alpha} u_{y y}=-\epsilon u+u^{3}$.

Localized states of SH

Consider one dimensional steady state problem

$$
0=-\left(1+\partial_{x}\right)^{2} u-\epsilon u+u^{3}, \quad u(\pm \infty)=0
$$

Complete bifurcation diagram is very complicated (Chapman \& Kozyreff, Physica D, 2009)
Simplest multiple scale solution: introduce slow scale $y=\epsilon^{\alpha} x$, so that $u(x, y)$ solves
$u_{x x x x}+4 \epsilon^{\alpha} u_{x x x y}+6 \epsilon^{2 \alpha} u_{x x y y}+4 \epsilon^{3 \alpha} u_{x y y y}+\epsilon^{4 \alpha} u_{y y y y}+2 u_{x x}+4 \epsilon^{\alpha} u_{x y}+\epsilon^{2 \alpha} u_{y y}=-\epsilon u+u^{3}$.
How to expand? expect nonlinear term u^{3} to emerge at same time ϵu does, suggests

$$
u=\epsilon^{1 / 2} u_{1}+\epsilon u_{2}+\epsilon^{3 / 2} u_{3}+\ldots
$$

Localized states of SH

Consider one dimensional steady state problem

$$
0=-\left(1+\partial_{x}\right)^{2} u-\epsilon u+u^{3}, \quad u(\pm \infty)=0
$$

Complete bifurcation diagram is very complicated (Chapman \& Kozyreff, Physica D, 2009)
Simplest multiple scale solution: introduce slow scale $y=\epsilon^{\alpha} x$, so that $u(x, y)$ solves
$u_{x x x x}+4 \epsilon^{\alpha} u_{x x x y}+6 \epsilon^{2 \alpha} u_{x x y y}+4 \epsilon^{3 \alpha} u_{x y y y}+\epsilon^{4 \alpha} u_{y y y y}+2 u_{x x}+4 \epsilon^{\alpha} u_{x y}+\epsilon^{2 \alpha} u_{y y}=-\epsilon u+u^{3}$.
How to expand? expect nonlinear term u^{3} to emerge at same time ϵu does, suggests

$$
u=\epsilon^{1 / 2} u_{1}+\epsilon u_{2}+\epsilon^{3 / 2} u_{3}+\ldots
$$

Leading order problem is $\mathcal{L} u \equiv\left(1+\partial_{x}^{2}\right)^{2} u_{1}=0$, so $u_{1}=A(y) \cos (x)+B(y) \sin (x)$. For simplicity, set $B=0$. Need $A(\pm \infty)=0$ to satisfy side conditions.

Localized states of SH, cont.

Order ϵ terms produce nothing consequential, and $\mathcal{O}\left(\epsilon^{3 / 2}\right)$ terms gives

$$
\mathcal{L} u_{3}=\left\{\begin{array}{ll}
\left(-2 A^{\prime \prime}-A+(3 / 4) A^{3}\right) \cos x, & \alpha \neq 1 / 2 \\
\left(4 A^{\prime \prime}-A+(3 / 4) A^{3}\right) \cos x, & \alpha=1 / 2
\end{array}+\right.\text { non-secular terms. }
$$

Localized states of SH, cont.
Order ϵ terms produce nothing consequential, and $\mathcal{O}\left(\epsilon^{3 / 2}\right)$ terms gives

$$
\mathcal{L} u_{3}=\left\{\begin{array}{ll}
\left(-2 A^{\prime \prime}-A+(3 / 4) A^{3}\right) \cos x, & \alpha \neq 1 / 2 \\
\left(4 A^{\prime \prime}-A+(3 / 4) A^{3}\right) \cos x, & \alpha=1 / 2
\end{array}+\right.\text { nonsecular terms. }
$$

Only the case $\alpha=1 / 2$ yields a system $4 A^{\prime \prime}-A+(3 / 4) A^{3}=0$ with a homoclinic orbit

Solution $u \sim \cos (x) A\left(\varepsilon^{\frac{1}{2}} x\right)$

Pattern formation and the Ginzburg-Landau equation

Consider an abstract evolution equation for $u(x, t)$ of the form

$$
u_{t}=\mathcal{L}_{\mu} u+N(u), \quad N(u)=\mathcal{O}\left(u^{2}\right)
$$

Suppose the linearized equation $u_{t}=\mathcal{L}_{\mu} u$ admits solutions $\epsilon(\sigma t+i k x)$ with $\sigma=\sigma(k, \mu)$ so that
(1) $\operatorname{Re} \sigma<0$ for all k if $\mu<0$, and
(2) exists wavenumber $k_{c}>0$ so $\operatorname{Re} \sigma\left(k_{c}, \mu\right)>0$ if $\mu>0$.

Pattern formation and the Ginzburg-Landau equation

Consider an abstract evolution equation for $u(x, t)$ of the form

$$
u_{t}=\mathcal{L}_{\mu} u+N(u), \quad N(u)=\mathcal{O}\left(u^{2}\right)
$$

Suppose the linearized equation $u_{t}=\mathcal{L}_{\mu} u$ admits solutions $\epsilon(\sigma t+i k x)$ with $\sigma=\sigma(k, \mu)$ so that
(1) $\operatorname{Re} \sigma<0$ for all k if $\mu<0$, and
(2) exists wavenumber $k_{c}>0$ so $\operatorname{Re} \sigma\left(k_{c}, \mu\right)>0$ if $\mu>0$.

For example, $\mathcal{L}=\mu-\left(1+\partial^{2} / \partial x^{2}\right)^{2}$ has $\sigma=\mu-\left(1-k^{2}\right)^{2}$. Set $\mu=r \epsilon^{2}$, $k_{c}=1$, so that unstable modes have form $k=1+\epsilon K$, where

$$
K \in\left(-\frac{1}{2} \sqrt{r}, \frac{1}{2} \sqrt{r}\right)+\mathcal{O}(\epsilon)
$$

and $\sigma=\epsilon^{2}\left(r-4 K^{2}\right)+\mathcal{O}\left(\epsilon^{3}\right)$.

Pattern formation and the Ginzburg-Landau equation

Consider an abstract evolution equation for $u(x, t)$ of the form

$$
u_{t}=\mathcal{L}_{\mu} u+N(u), \quad N(u)=\mathcal{O}\left(u^{2}\right)
$$

Suppose the linearized equation $u_{t}=\mathcal{L}_{\mu} u$ admits solutions $\epsilon(\sigma t+i k x)$ with $\sigma=\sigma(k, \mu)$ so that
(1) $\operatorname{Re} \sigma<0$ for all k if $\mu<0$, and
(2) exists wavenumber $k_{c}>0$ so $\operatorname{Re} \sigma\left(k_{c}, \mu\right)>0$ if $\mu>0$.

For example, $\mathcal{L}=\mu-\left(1+\partial^{2} / \partial x^{2}\right)^{2}$ has $\sigma=\mu-\left(1-k^{2}\right)^{2}$. Set $\mu=r \epsilon^{2}$, $k_{c}=1$, so that unstable modes have form $k=1+\epsilon K$, where

$$
K \in\left(-\frac{1}{2} \sqrt{r}, \frac{1}{2} \sqrt{r}\right)+\mathcal{O}(\epsilon)
$$

and $\sigma=\epsilon^{2}\left(r-4 K^{2}\right)+\mathcal{O}\left(\epsilon^{3}\right)$.
How do unstable modes evolve?
$u \sim \exp \left[i(1+\epsilon K) x+\epsilon^{2}(r-4 K)^{2} t\right]=\exp (i x) \exp \left[i K(\epsilon x)+\left(r-4 K^{2}\right)\left(\epsilon^{2} t\right)\right]=A\left(\epsilon x, \epsilon^{2} t\right) e^{i x}$.
This suggests using a multiple scale ansatz $u \sim \epsilon^{\alpha} U(x, X, T)$ where $X=\epsilon X$ and $T=\epsilon^{2} t$, with α determined by nonlinearity.

Pattern formation and the Ginzburg-Landau equation

Consider an abstract evolution equation for $u(x, t)$ of the form

$$
u_{t}=\mathcal{L}_{\mu} u+N(u), \quad N(u)=\mathcal{O}\left(u^{2}\right)
$$

Suppose the linearized equation $u_{t}=\mathcal{L}_{\mu} u$ admits solutions $\epsilon(\sigma t+i k x)$ with $\sigma=\sigma(k, \mu)$ so that
(1) $\operatorname{Re} \sigma<0$ for all k if $\mu<0$, and
(2) exists wavenumber $k_{c}>0$ so $\operatorname{Re} \sigma\left(k_{c}, \mu\right)>0$ if $\mu>0$.

For example, $\mathcal{L}=\mu-\left(1+\partial^{2} / \partial x^{2}\right)^{2}$ has $\sigma=\mu-\left(1-k^{2}\right)^{2}$. Set $\mu=r \epsilon^{2}$, $k_{c}=1$, so that unstable modes have form $k=1+\epsilon K$, where

$$
K \in\left(-\frac{1}{2} \sqrt{r}, \frac{1}{2} \sqrt{r}\right)+\mathcal{O}(\epsilon)
$$

and $\sigma=\epsilon^{2}\left(r-4 K^{2}\right)+\mathcal{O}\left(\epsilon^{3}\right)$.
How do unstable modes evolve?
$u \sim \exp \left[i(1+\epsilon K) x+\epsilon^{2}(r-4 K)^{2} t\right]=\exp (i x) \exp \left[i K(\epsilon x)+\left(r-4 K^{2}\right)\left(\epsilon^{2} t\right)\right]=A\left(\epsilon x, \epsilon^{2} t\right) e^{i x}$.
This suggests using a multiple scale ansatz $u \sim \epsilon^{\alpha} U(x, X, T)$ where $X=\epsilon X$ and $T=\epsilon^{2} t$, with α determined by nonlinearity.

Goal: find amplitude evolution equation, known as the Ginzburg-Landau equation.

GL equation for Swift-Hohenberg

Consider dynamic SH equation

$$
u_{t}=\mu u-\left(1+\partial^{2} / \partial x^{2}\right)^{2}-u^{3}, \quad \mu=r \epsilon^{2}
$$

(note difference with steady-state problem: sign of r is positive here) With multiple scale ansatz $u=\epsilon U(x, X, T)$, problem is
$\epsilon^{2} U_{T}=-U_{x x x x}-2 U_{x x}-4 \epsilon U_{x x}-2 \epsilon^{2} U_{x x}-U_{x x x x}-4 \epsilon U_{x x x x}-6 \epsilon^{2} U_{x x x x}+r \epsilon^{2} U-\epsilon^{2} U^{3}+\mathcal{O}\left(\epsilon^{3}\right)$
Expanding in powers of ϵ, leading order problem is

$$
-U_{0 x x x x}-2 U_{0 x x}-U_{0} \equiv \mathcal{L}_{0} U_{0}=0
$$

whose solution is $U_{0}=A(X, T) e^{i x}+$ c.c..

GL equation for Swift-Hohenberg

Consider dynamic SH equation

$$
u_{t}=\mu u-\left(1+\partial^{2} / \partial x^{2}\right)^{2}-u^{3}, \quad \mu=r \epsilon^{2}
$$

(note difference with steady-state problem: sign of r is positive here) With multiple scale ansatz $u=\epsilon U(x, X, T)$, problem is
$\epsilon^{2} U_{T}=-U_{x x x x}-2 U_{x x}-4 \epsilon U_{x x}-2 \epsilon^{2} U_{x x}-U_{x x x x}-4 \epsilon U_{x x x x}-6 \epsilon^{2} U_{x x x x}+r \epsilon^{2} U-\epsilon^{2} U^{3}+\mathcal{O}\left(\epsilon^{3}\right)$
Expanding in powers of ϵ, leading order problem is

$$
-U_{0 x x x x}-2 U_{0 x x}-U_{0} \equiv \mathcal{L}_{0} U_{0}=0
$$

whose solution is $U_{0}=A(X, T) e^{i x}+c . c$.
As in steady state analysis, nothing of consequence occurs at $\mathcal{O}\left(\epsilon^{2}\right)$, and at order ϵ^{3}, get

$$
\mathcal{L}_{0} U_{2}=\left(A_{T}-r A-4 A_{X X}+3|A|^{2} A\right) e^{i x}+\text { c.c. }+ \text { non-secular. }
$$

Result is Ginzburg-Landau equation

$$
A_{T}=4 A_{X x}+r A-3|A|^{2} A
$$

describing propagation of pattern into unstable state.

Amplitude equation for nonlinear waves

Consider "Sine -Gordon" equation

$$
\psi_{t t}=c^{2} \psi_{x x}-\omega_{0}^{2} \sin \psi, \quad-\infty<x<\infty
$$

The linearized equation $\psi_{t t}=c^{2} \psi_{x x}-\omega_{0}^{2} \psi$ has a dispersion relation $\omega^{2}=\omega_{0}^{2}+c^{2} k^{2}$.

Amplitude equation for nonlinear waves

Consider "Sine -Gordon" equation

$$
\psi_{t t}=c^{2} \psi_{x x}-\omega_{0}^{2} \sin \psi, \quad-\infty<x<\infty
$$

The linearized equation $\psi_{t t}=c^{2} \psi_{x x}-\omega_{0}^{2} \psi$ has a dispersion relation $\omega^{2}=\omega_{0}^{2}+c^{2} k^{2}$.

Here, we impose a slow modulation on anderlying wave of the form $e^{i k x-i \omega t}$, which has scales $X=\epsilon X, T_{1}=\epsilon t$, and $T_{2}=\epsilon^{2} t$.

Consider "Sine -Gordon" equation

$$
\psi_{t t}=c^{2} \psi_{x x}-\omega_{0}^{2} \sin \psi, \quad-\infty<x<\infty
$$

The linearized equation $\psi_{t t}=c^{2} \psi_{x x}-\omega_{0}^{2} \psi$ has a dispersion relation $\omega^{2}=\omega_{0}^{2}+c^{2} k^{2}$.

Here, we impose a slow modulation on an underlying wave of the form $e^{i k x-i \omega t}$, which has scales $X=\epsilon x, T_{1}=\epsilon t$, and $T_{2}=\epsilon^{2} t$.

Expanding $\psi \sim \epsilon \psi_{1}+\epsilon^{2} \psi_{2}+\epsilon^{3} \psi_{3}+\ldots$, leading order is

$$
\psi_{1 t t}-c^{2} \psi_{1 x x}+\omega_{0}^{2} \psi_{1} \equiv \mathcal{L} \psi=0 .
$$

Impose specific wavelength k, so $\psi_{1}=A\left(X, T_{1}, T_{2}\right) e^{i k x-i \omega t}$.

Nonlinear waves cont.

For $\mathcal{O}\left(\epsilon^{2}\right)$, have

$$
\mathcal{L} \psi_{2}=\left(2 i \omega A_{T_{1}}+2 i c^{2} k A_{X}\right) e^{i k x-i \omega t}+\text { c.c. }
$$

so to avoid secular terms,

$$
A_{T_{1}}+v_{g} A_{X}=0, \quad v_{g}=c^{2} k / \omega=\omega^{\prime}(k) .
$$

In other words, amplitude propagates at group velocity. Solution to this transport equation is $A=\left(X-v_{g} T_{1}, T_{2}\right)$.

Nonlinear waves cont.

For $\mathcal{O}\left(\epsilon^{2}\right)$, have

$$
\mathcal{L} \psi_{2}=\left(2 i \omega A_{T_{1}}+2 i c^{2} k A_{x}\right) e^{i k x-i \omega t}+c . c .
$$

so to avoid secular terms,

$$
A_{T_{1}}+v_{g} A_{X}=0, \quad v_{g}=c^{2} k / \omega=\omega^{\prime}(k)
$$

In other words, amplitude propagates at group velocity. Solution to this transport equation is $A=\left(X-v_{g} T_{1}, T_{2}\right)$.

For $\mathcal{O}\left(\epsilon^{3}\right)$, have
$\mathcal{L} \psi_{3}=\left(-A_{T_{1} T_{1}} 2 i \omega A_{T_{2}}+c^{2} A_{X X}+\frac{1}{2} \omega_{0}^{2}|A|^{2} A\right) e^{i k x-i \omega t}+$ c.c. + non-secular terms
so to avoid secular terms,

$$
A_{T_{2}}=-\frac{1}{2 i \omega}\left(\left(c^{2} v_{g}^{2}\right) A_{X X}+\frac{1}{2} \omega_{0}^{2}|A|^{2} A\right)=\frac{i}{2} \omega^{\prime \prime}(k) A_{X x}+\frac{i}{4} \frac{\omega_{0}^{2}}{\omega}|A|^{2} A .
$$

This is the nonlinear Schrödinger equation; the term $\omega^{\prime \prime}(k)$ is the group velocity dispersion.

