Asymptotic Methods

Multiple scale techniques for PDEs: waves and
patterns



The Swift-Hohenberg equation

Seminal prototype for pattern formation (convection rolls, optical instabilities,
biological patterns,...)
u=—(A+ 1)2u + N(u).




Localized states of SH

Consider one dimensional steady state problem
0=—(1+0)u—eu+u’, u(doo)=0.

Complete bifurcation diagram is very complicated (Chapman & Kozyreff,
Physica D, 2009)
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Consider one dimensional steady state problem
0=—(1+0)u—eu+u’, u(doo)=0.

Complete bifurcation diagram is very complicated (Chapman & Kozyreff,
Physica D, 2009)

Simplest multiple scale solution: introduce slow scale y = €*x, so that u(x, y)
solves

a 2 3a 4o fe 2c 3
Usooox T4 Uy F0€" Uy +4€™ Uy F€  Uyyyy +2Usx+-4€” Uy +€"“ 1y, = —eu-u”.

How to expand? expect nonlinear term u® to emerge at same time eu does,
suggests

u= el/zul +EU2+63/ZU3+...
Leading order problem is Lu = (14 82)?u; = 0, so

u1 = A(y) cos(x) + B(y) sin(x). For simplicity, set B = 0. Need A(£o0) =0 to
satisfy side conditions.



Localized states of SH, cont.

Order € terms produce nothing consequential, and 0(63/2) terms gives

Cus = {(—2A” — A+ (3/4)A% cosx, a#1/2

= 9 5 + non-secular terms.
(4A" — A+ (3/4)A°)cosx, a=1/2



Localized states of SH, cont.

Order € terms produce nothing consequential, and (9(63/2) terms gives
fon = (—2A" — A+ (3/4)A%) cosx, a#1/2
T\ (A — A+ (3/4)A% cosx, a=1/2

Only the case a = 1/2 yields a system 4A” — A+ (3/4)A% = 0 with a
homoclinic orbit

+ non-secular terms.
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Pattern formation and the Ginzburg-Landau equation

Consider an abstract evolution equation for u(x, t) of the form
u = Lyu+ N(u), N(u)=O(>).

Suppose the linearized equation u; = £, u admits solutions e(ot + ikx) with
o = o(k, ) so that

(1) Re o < 0 for all kif 4 <0, and

(2) exists wavenumber k. > 0 so Re o(kc, ) > 0if > 0.
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Consider an abstract evolution equation for u(x, t) of the form
u = Lyu+ N(u), N(u)=O(>).

Suppose the linearized equation u; = £, u admits solutions e(ot + ikx) with
o = o(k, ) so that

(1) Re o < 0 for all kif 4 <0, and

(2) exists wavenumber k. > 0 so Re o(kc, ) > 0if > 0.

For example, £ =y — (14 0%/0x*)? has 0 = u — (1 — k*)?. Set u = ré?,
ke = 1, so that unstable modes have form k = 1 + ¢K, where

K € (— 377, 2VD) + 0(e),
and o = €(r — 4K?) + O(&%).
How do unstable modes evolve?
u ~ expli(1+eK)x+€ (r—4K)*t] = exp(ix) exp[iK (ex)+(r—4K>)(€t)] = A(ex, €t)e”™.

This suggests using a multiple scale ansatz u ~ ¢*U(x, X, T) where X = ex
and T = €2t, with o determined by nonlinearity.

Goal: find amplitude evolution equation, known as the Ginzburg-Landau
equation.



GL equation for Swift-Hohenberg

Consider dynamic SH equation
v =pu— (14+9°/0x°)° —u®, p=ré.

(note difference with steady-state problem: sign of r is positive here)
With multiple scale ansatz u = eU(x, X, T), problem is
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Expanding in powers of ¢, leading order problem is
_UOXXXX - 2U0xx - UO = EOUO = 07

whose solution is Uy = A(X, T)e™ + c.c..
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Consider dynamic SH equation
v =pu— (14+9°/0x°)° —u®, p=ré.

(note difference with steady-state problem: sign of r is positive here)
With multiple scale ansatz u = eU(x, X, T), problem is

EUr = —Unoox—2 U — A€ Usixx — 26> Uxix — Usoooe — A€ Uk — 66> Unpoxx +re> U—2 UP+O(€7)
Expanding in powers of ¢, leading order problem is

—Uoxox — 2Uoxx — Uo = LolUp = 0,
whose solution is Uy = A(X, T)e™ + c.c..

As in steady state analysis, nothing of consequence occurs at O(€?), and at
order €3, get

LoU> = (A1 — rA — 4Axx + 3|A[°A)e”™ + c.c. + non-secular.
Result is Ginzburg-Landau equation
At = 4Axx + rA — 3|APA,

describing propagation of pattern into unstable state.



Amplitude equation for nonlinear waves

Consider “Sine -Gordon” equation
Yee = o — whsing,  —00 < x < 00

The linearized equation 1 = c*t — w31 has a dispersion relation

w? = wi + c2k2,



Amplitude equation for nonlinear waves

Consider “Sine -Gordon” equation
2 2 .
Y = T —wpsingy,  —oo < x < o0
The linearized equation 1 = c*t — w31 has a dispersion relation
w? = wi + c2k2,
Here, we impose a slow modulation on an underlying wave of the form e ~/t,
which has scales X = ex, T1 = et, and T, = €t



Amplitude equation for nonlinear waves

Consider “Sine -Gordon” equation
Yee = o — whsing,  —00 < x < 00

The linearized equation 1 = c*t — w31 has a dispersion relation

w? = wi + c2k2,

Here, we impose a slow modulation on an underlying wave of the form e ~/t,
which has scales X = ex, T1 = ¢t, and T, = €°t.

Expanding @ ~ ei)1 + ¢2b + 31b3 + .. ., leading order is
?/)1:: - Czwlxx + wg'l/fl = E’l/) =0.

Impose specific wavelength k, so i1 = A(X, T1, To)e™ ™,



Nonlinear waves cont.

For O(€?), have

Ly = (2iwA7, + 2ic’kAx)e™ ™t + c.c.,
so to avoid secular terms,

AT 4+ v Ax =0, vy = ckjw = (k).

In other words, amplitude propagates at group velocity. Solution to this
transport equation is A = (X — v, T1, T2).
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For O(€%), have
. 1 ikx—iw
Lip3 = (—A7,1,2iwAT, + S Axx + §w§|A|2A)e kit 4 ¢ c. + non-secular terms

so to avoid secular terms,
Ap, = — L (PV2)Axx + 1WE,|A\2A = iw”(k)AXX + iw—g|A|2A.
2 2iw € 2 2 4w
This is the nonlinear Schrodinger equation; the term w'’(k) is the group

velocity dispersion.



