
Asymptotic Methods
Preliminaries: motivation and order notation



Introduction

How can we understand a difficult mathematical model?

Exact solutions (rare)

Rigorous theorems (often not constructive)

Numerical simulation (limited to specific inputs)

Is there a middle ground?

Limiting cases are often perfectly tractable!

This happens when a parameter is close to a limiting value, for
example small Reynolds number in fluid flow, velocity near speed
of light, large numbers in probability
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Preliminary example

Consider launching a rocket, whose trajectory is subject to both gravity and
friction

ẍ = − GMm

(x + R)2
− kẋ .

This is second order, not integrable, and nonlinear - no exact solution is
possible.

Nondimensionalize x ′ = x/R, t′ = t/(R3/GM)1/2, giving

ẍ = − 1

(x + 1)2
− εẋ , ε = k

√
R3

GMm
� 1.

Consider x(0) = 0 and x ′(0) =
√

2. Setting ε = 0, the equation is integrable:

ẋ2

2
≈ 1

x + 1
, x(t) ≈ x0(t) = η2/3 − 1, η ≡ 3

√
2t/2 + 1.

But what about effect of friction?



Preliminary example

Consider launching a rocket, whose trajectory is subject to both gravity and
friction

ẍ = − GMm

(x + R)2
− kẋ .
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ẍ = − 1

(x + 1)2
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Example cont.

Incorporate correction term x(t) = x0(t) + εx1(t), so that

ẍ0 + εẍ1 = − 1

(x0 + εx1 + 1)2
− ε(ẋ0 + εẋ1)

After Taylor expansion of the nonlinear term, retain only terms with ε:

ẍ1 =
2x1

(x0 + 1)3
− ẋ0 =

2x1
η3
−
√

2η−1/3.

This is linear and inhomogeneous, so we can solve explicitly

x1 = c1η
4/3 + c2η

−1/3 −
√

2

3
η5/3.

Also, x1(0) = 0 = ẋ1(0), leading to c1 = 16
√

2/39 and c2 = −
√

2/13.

ε = .1
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ẍ0 + εẍ1 = − 1

(x0 + εx1 + 1)2
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Also, x1(0) = 0 = ẋ1(0), leading to c1 = 16
√

2/39 and c2 = −
√

2/13.

ε = .1



Order (Landau) notation

How to compare sizes of (dimensionless) quantities as a limit is approached?

Definition

We say f (x) = O(g(x)) as x → 0 if there exists K , δ so that

|f (x)| ≤ K |g(x)|

whenever |x | < δ.

Definition

We say f (x) = o(g(x)) as x → 0 if

lim
x→0

f (x)

g(x)
= 0.

Definition

We say f (x) ∼ g(x) as x → 0 if

lim
x→0

f (x)

g(x)
= 1.
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Order (Landau) notation, cont.

An easy characterization of big-O notation is the following:

Lemma

If limx→0

∣∣∣ f (x)g(x)

∣∣∣ = m <∞, then f (x) = O(g(x)).

Proof: existence of the limit means that for any small ε there exists some δ so
that |x | < δ implies ∣∣∣∣∣∣∣∣ f (x)

g(x)

∣∣∣∣−m

∣∣∣∣ ≤ ε,
which is the same as |f (x)| ≤ (|m|+ ε)|g(x)|.

Exercise: show the converse is not true!

It is useful to think of O, o and ∼ like ≤, <,=.

Similar definitions exist for x → x0 and x →∞.
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Simple examples of order notation

Example 1: sin(x) = O(x) as x → 0 since limx→0 sin x/x = 1.
This also means that sin(x) ∼ x as x → 0.

Example 2: If f (x) is real analytic and Pn(x) is the n-th order Taylor
polynomial about x0, then f (x) ∼ Pn(x) as x → x0. This is true since
remainder theorem implies

f (x)− Pn(x) = O(|x − x0|n+1),

so that
f (x)

Pn(x)
= 1 +

O(|x − x0|n+1)

Pn(x)
, which → 1 as x → x0.

Example 3: For any positive integer n, exp(−1/x) = o(xn) as x → 0+.
(note one sided limit)

Example 4: For any positive integer n, ln x = o(xn) as x →∞.

A couple useful facts:

f (x) = O(1) as x → x0 means f (x) is locally bounded near x0.

f (x) = o(1) as x → x0 means f (x)→ 0 as x0 is approached.
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