Asymptotic Methods
Preliminaries: motivation and order notation

How can we understand a difficult mathematical model?
■ Exact solutions (rare)

How can we understand a difficult mathematical model?

- Exact solutions (rare)

■ Rigorous theorems (often not constructive)

How can we understand a difficult mathematical model?
■ Exact solutions (rare)
■ Rigorous theorems (often not constructive)
■ Numerical simulation (limited to specific inputs)

Is there a middle ground?

How can we understand a difficult mathematical model?

- Exact solutions (rare)

■ Rigorous theorems (often not constructive)
■ Numerical simulation (limited to specific inputs)

Is there a middle ground?
Limiting cases are often perfectly tractable!
This happens when a parameter is close to a limiting value, for example small Reynolds number in fluid flow, velocity near speed of light, large numbers in probability

Preliminary example

Consider launching a rocket, whose trajectory is subject to both gravity and friction

$$
\ddot{x}=-\frac{G M m}{(x+R)^{2}}-k \dot{x} .
$$

This is second order, not integrable, and nonlinear - no exact solution is possible.

Consider launching a rocket, whose trajectory is subject to both gravity and friction

$$
\ddot{x}=-\frac{G M m}{(x+R)^{2}}-k \dot{x} .
$$

This is second order, not integrable, and nonlinear - no exact solution is possible.
Nondimensionalize $x^{\prime}=x / R, t^{\prime}=t /\left(R^{3} / G M\right)^{1 / 2}$, giving

$$
\ddot{x}=-\frac{1}{(x+1)^{2}}-\epsilon \dot{x}, \quad \epsilon=k \sqrt{\frac{R^{3}}{G M m}} \ll 1 .
$$

Consider launching a rocket, whose trajectory is subject to both gravity and friction

$$
\ddot{x}=-\frac{G M m}{(x+R)^{2}}-k \dot{x} .
$$

This is second order, not integrable, and nonlinear - no exact solution is possible.
Nondimensionalize $x^{\prime}=x / R, t^{\prime}=t /\left(R^{3} / G M\right)^{1 / 2}$, giving

$$
\ddot{x}=-\frac{1}{(x+1)^{2}}-\epsilon \dot{x}, \quad \epsilon=k \sqrt{\frac{R^{3}}{G M m}} \ll 1 .
$$

Consider $x(0)=0$ and $x^{\prime}(0)=\sqrt{2}$. Setting $\epsilon=0$, the equation is integrable:

$$
\frac{\dot{x}^{2}}{2} \approx \frac{1}{x+1}, \quad x(t) \approx x_{0}(t)=\eta^{2 / 3}-1, \quad \eta \equiv 3 \sqrt{2} t / 2+1
$$

But what about effect of friction?

Consider launching a rocket, whose trajectory is subject to both gravity and friction

$$
\ddot{x}=-\frac{G M m}{(x+R)^{2}}-k \dot{x} .
$$

This is second order, not integrable, and nonlinear - no exact solution is possible.
Nondimensionalize $x^{\prime}=x / R, t^{\prime}=t /\left(R^{3} / G M\right)^{1 / 2}$, giving

$$
\ddot{x}=-\frac{1}{(x+1)^{2}}-\epsilon \dot{x}, \quad \epsilon=k \sqrt{\frac{R^{3}}{G M m}} \ll 1 .
$$

Consider $x(0)=0$ and $x^{\prime}(0)=\sqrt{2}$. Setting $\epsilon=0$, the equation is integrable:

$$
\frac{\dot{x}^{2}}{2} \approx \frac{1}{x+1}, \quad x(t) \approx x_{0}(t)=\eta^{2 / 3}-1, \quad \eta \equiv 3 \sqrt{2} t / 2+1
$$

But what about effect of friction?

Example cont.

Incorporate correction term $x(t)=x_{0}(t)+\epsilon x_{1}(t)$, so that

$$
\ddot{x}_{0}+\epsilon \ddot{x}_{1}=-\frac{1}{\left(x_{0}+\epsilon x_{1}+1\right)^{2}}-\epsilon\left(\dot{x}_{0}+\epsilon \dot{x}_{1}\right)
$$

After Taylor expansion of the nonlinear term, retain only terms with ϵ :

$$
\ddot{x}_{1}=\frac{2 x_{1}}{\left(x_{0}+1\right)^{3}}-\dot{x}_{0}=\frac{2 x_{1}}{\eta^{3}}-\sqrt{2} \eta^{-1 / 3} .
$$

Example cont.

Incorporate correction term $x(t)=x_{0}(t)+\epsilon x_{1}(t)$, so that

$$
\ddot{x}_{0}+\epsilon \ddot{x}_{1}=-\frac{1}{\left(x_{0}+\epsilon x_{1}+1\right)^{2}}-\epsilon\left(\dot{x}_{0}+\epsilon \dot{x}_{1}\right)
$$

After Taylor expansion of the nonlinear term, retain only terms with ϵ :

$$
\ddot{x}_{1}=\frac{2 x_{1}}{\left(x_{0}+1\right)^{3}}-\dot{x}_{0}=\frac{2 x_{1}}{\eta^{3}}-\sqrt{2} \eta^{-1 / 3} .
$$

This is linear and inhomogeneous, so we can solve explicitly

$$
x_{1}=c_{1} \eta^{4 / 3}+c_{2} \eta^{-1 / 3}-\frac{\sqrt{2}}{3} \eta^{5 / 3}
$$

Also, $x_{1}(0)=0=\dot{x}_{1}(0)$, leading to $c_{1}=16 \sqrt{2} / 39$ and $c_{2}=-\sqrt{2} / 13$.

Order (Landau) notation

How to compare sizes of (dimensionless) quantities as a limit is approached?

Order (Landau) notation

How to compare sizes of (dimensionless) quantities as a limit is approached?

Definition

We say $f(x)=\mathcal{O}(g(x))$ as $x \rightarrow 0$ if there exists K, δ so that

$$
|f(x)| \leq K|g(x)|
$$

whenever $|x|<\delta$.

Definition

We say $f(x)=o(g(x))$ as $x \rightarrow 0$ if

$$
\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=0
$$

Definition

We say $f(x) \sim g(x)$ as $x \rightarrow 0$ if

$$
\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=1
$$

Order (Landau) notation, cont.

An easy characterization of big-O notation is the following:

Lemma

If $\lim _{x \rightarrow 0}\left|\frac{f(x)}{g(x)}\right|=m<\infty$, then $f(x)=\mathcal{O}(g(x))$.
Proof: existence of the limit means that for any small ε there exists some δ so that $|x|<\delta$ implies

$$
\left|\left|\frac{f(x)}{g(x)}\right|-m\right| \leq \varepsilon
$$

which is the same as $|f(x)| \leq(|m|+\varepsilon)|g(x)|$.
Exercise: show the converse is not true!

Order (Landau) notation, cont.

An easy characterization of big-O notation is the following:

Lemma

If $\lim _{x \rightarrow 0}\left|\frac{f(x)}{g(x)}\right|=m<\infty$, then $f(x)=\mathcal{O}(g(x))$.
Proof: existence of the limit means that for any small ε there exists some δ so that $|x|<\delta$ implies

$$
\left|\left|\frac{f(x)}{g(x)}\right|-m\right| \leq \varepsilon
$$

which is the same as $|f(x)| \leq(|m|+\varepsilon)|g(x)|$.
Exercise: show the converse is not true!

- It is useful to think of \mathcal{O}, o and \sim like $\leq,<,=$.
- Similar definitions exist for $x \rightarrow x_{0}$ and $x \rightarrow \infty$.

Simple examples of order notation

Example 1: $\sin (x)=\mathcal{O}(x)$ as $x \rightarrow 0$ since $\lim _{x \rightarrow 0} \sin x / x=1$. This also means that $\sin (x) \sim x$ as $x \rightarrow 0$.

Simple examples of order notation

Example 1: $\sin (x)=\mathcal{O}(x)$ as $x \rightarrow 0$ since $\lim _{x \rightarrow 0} \sin x / x=1$. This also means that $\sin (x) \sim x$ as $x \rightarrow 0$.

Example 2: If $f(x)$ is real analytic and $P_{n}(x)$ is the n-th order Taylor polynomial about x_{0}, then $f(x) \sim P_{n}(x)$ as $x \rightarrow x_{0}$. This is true since remainder theorem implies

$$
f(x)-P_{n}(x)=\mathcal{O}\left(\left|x-x_{0}\right|^{n+1}\right)
$$

so that

$$
\frac{f(x)}{P_{n}(x)}=1+\frac{\mathcal{O}\left(\left|x-x_{0}\right|^{n+1}\right)}{P_{n}(x)}, \quad \text { which } \rightarrow 1 \text { as } x \rightarrow x_{0}
$$

Simple examples of order notation

Example 1: $\sin (x)=\mathcal{O}(x)$ as $x \rightarrow 0$ since $\lim _{x \rightarrow 0} \sin x / x=1$.
This also means that $\sin (x) \sim x$ as $x \rightarrow 0$.
Example 2: If $f(x)$ is real analytic and $P_{n}(x)$ is the n-th order Taylor polynomial about x_{0}, then $f(x) \sim P_{n}(x)$ as $x \rightarrow x_{0}$. This is true since remainder theorem implies

$$
f(x)-P_{n}(x)=\mathcal{O}\left(\left|x-x_{0}\right|^{n+1}\right)
$$

so that

$$
\frac{f(x)}{P_{n}(x)}=1+\frac{\mathcal{O}\left(\left|x-x_{0}\right|^{n+1}\right)}{P_{n}(x)}, \quad \text { which } \rightarrow 1 \text { as } x \rightarrow x_{0}
$$

Example 3: For any positive integer $n, \exp (-1 / x)=o\left(x^{n}\right)$ as $x \rightarrow 0^{+}$. (note one sided limit)

Simple examples of order notation

Example 1: $\sin (x)=\mathcal{O}(x)$ as $x \rightarrow 0$ since $\lim _{x \rightarrow 0} \sin x / x=1$.
This also means that $\sin (x) \sim x$ as $x \rightarrow 0$.
Example 2: If $f(x)$ is real analytic and $P_{n}(x)$ is the n-th order Taylor polynomial about x_{0}, then $f(x) \sim P_{n}(x)$ as $x \rightarrow x_{0}$. This is true since remainder theorem implies

$$
f(x)-P_{n}(x)=\mathcal{O}\left(\left|x-x_{0}\right|^{n+1}\right)
$$

so that

$$
\frac{f(x)}{P_{n}(x)}=1+\frac{\mathcal{O}\left(\left|x-x_{0}\right|^{n+1}\right)}{P_{n}(x)}, \quad \text { which } \rightarrow 1 \text { as } x \rightarrow x_{0}
$$

Example 3: For any positive integer $n, \exp (-1 / x)=o\left(x^{n}\right)$ as $x \rightarrow 0^{+}$. (note one sided limit)

Example 4: For any positive integer $n, \ln x=o\left(x^{n}\right)$ as $x \rightarrow \infty$.

Simple examples of order notation

Example 1: $\sin (x)=\mathcal{O}(x)$ as $x \rightarrow 0$ since $\lim _{x \rightarrow 0} \sin x / x=1$.
This also means that $\sin (x) \sim x$ as $x \rightarrow 0$.
Example 2: If $f(x)$ is real analytic and $P_{n}(x)$ is the n-th order Taylor polynomial about x_{0}, then $f(x) \sim P_{n}(x)$ as $x \rightarrow x_{0}$. This is true since remainder theorem implies

$$
f(x)-P_{n}(x)=\mathcal{O}\left(\left|x-x_{0}\right|^{n+1}\right)
$$

so that

$$
\frac{f(x)}{P_{n}(x)}=1+\frac{\mathcal{O}\left(\left|x-x_{0}\right|^{n+1}\right)}{P_{n}(x)}, \quad \text { which } \rightarrow 1 \text { as } x \rightarrow x_{0}
$$

Example 3: For any positive integer $n, \exp (-1 / x)=o\left(x^{n}\right)$ as $x \rightarrow 0^{+}$. (note one sided limit)

Example 4: For any positive integer $n, \ln x=o\left(x^{n}\right)$ as $x \rightarrow \infty$.
A couple useful facts:

- $f(x)=\mathcal{O}(1)$ as $x \rightarrow x_{0}$ means $f(x)$ is locally bounded near x_{0}.
- $f(x)=o(1)$ as $x \rightarrow x_{0}$ means $f(x) \rightarrow 0$ as x_{0} is approached.

