
Asymptotic Methods

Solvability conditions and eigenvalue problems



The Fredholm Alternative

The Fredholm alternative is a fundamental result from linear algebra,
concerning the ability to solve Lx = b where L is a matrix or linear operator.

Singular linear problems are frequently encountered in deriving asymptotic
expansions. A useful form of the Fredholm alternative is

Fredholm

Suppose that L : V → V is a linear mapping from a Hilbert space V to itself
(e.g. a square matrix). If the adjoint of L has a nullspace spanned by
v1, v2, . . . , vk , then necessary and sufficient conditions to solve Lv = b are

< vi , b >= 0, i = 1, 2, . . . , k.

Remarks:

Proof is easy: simply take the inner product of both sides with each vi ,
and use the definition of adjoint.

Notice that the solution of Lx = b will not be unique, but rather the sum
of a particular solution plus the nullspace of L.

For boundary value problems, the boundary conditions also come into
play.
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Perturbation of finite dimensional linear problems

If A,B are nonsingular, symmetric, square matrices, then (A + εB)x = y
admits a regular expansion x = x0 + εx1 + ε2x2 + . . .. Inserting this and
equating powers of ε gives a hierarchy of linear problems

Axn = −Bxn−1, n = 1, 2, 3, . . .

Suppose instead that A has a one dimensional nullspace spanned by v . Could it
be that A + εB is nonsingular?

Let’s solve (A + εB)x = y . Since its unlikely
that Ax = y has any solution, this choice of dominant balance is not going to
work. Instead, expand x = ε−1x−1 + x0 + . . ., giving

Ax−1 = 0,

Ax0 = y − Bx−1.

The first equation has solution x−1 = cv where c is yet undetermined. The
second equation can only be solved if the right had side is orthogonal to v ,
which means

v · (y − cBv) = 0, or c = (y · v)/(Bv · v).

Notice this “selects” the value of c. This process can be repeated for other
terms in the expansion.
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Perturbation of eigenvalues

If a matrix is altered slightly, how do its eigenvalues change?

Consider (A + εB)x = λx , where A,B are square matrices, Suppose that
(x0, λ0) is a known eigenvector/value pair for A.

Expand both x = x0 + εx1 + . . . and λ = λ0 + ελ1 + . . ., so that the leading
order problem Ax0 = λx0 is automatically solved. The next order gives

(A− λ0I )x1 = −Bx0 + λ1x0.

The matrix A− λ0I is necessarily singular, and therefore so is the adjoint
A∗ − λ0I . Letting x∗ be the adjoint eigenvector solving (A∗ − λ0I )x

∗ = 0,
Fredholm implies

(λ1x0 − Bx0) · x∗ = 0, or λ1 =
x∗ · Bx0
x∗ · x0

.
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Solvability of boundary value problems

Consider the standard Sturm-Liouville boundary value problem for u = u(x),

Lu ≡ (p(x)u′)′ + q(x)u = r(x), u(a) = ua, u(b) = ub.

If the operator L is not singular (no zero eigenvalues), this problem has a
unique solution.

On the other hand, if L has a nullspace spanned by the eigenfunction v(x),
then a solvability condition is derived by multiplying the equation by v(x) and
integrating over the domain. The result is∫ b

a

v(x)r(x) dx +
[
p(x)(u′(x)v(x)− u(x)v ′(x))

]b
a

= 0.

This is both a necessary and sufficient condition to find a solution.



Solvability of boundary value problems

Consider the standard Sturm-Liouville boundary value problem for u = u(x),

Lu ≡ (p(x)u′)′ + q(x)u = r(x), u(a) = ua, u(b) = ub.

If the operator L is not singular (no zero eigenvalues), this problem has a
unique solution.

On the other hand, if L has a nullspace spanned by the eigenfunction v(x),
then a solvability condition is derived by multiplying the equation by v(x) and
integrating over the domain. The result is∫ b

a

v(x)r(x) dx +
[
p(x)(u′(x)v(x)− u(x)v ′(x))

]b
a

= 0.

This is both a necessary and sufficient condition to find a solution.



Example: a perturbed SL eigenvalue problem

Consider
u′′ + q(x)u = 0, u(0) = 0 = u(L).

where q(x) = λ+ εa(x). For ε = 0, this is a standard eigenvalue problem,
which has solutions

u0 = sin(nπx/L), λ0 =
(nπ

L

)2
, n = 1, 2, 3, . . .

We can perturb around a particular eigenpair by expanding λ = λ0 + ελ1 + . . .
and u = u0 + εu1 + . . ., giving

Lu1 ≡ u′′1 + λ0u1 = −λ1u0 − a(x)u0.

Since λ0 is an eigenvalue, L is singular (and self adjoint) with nullspace
spanned by u0. Solvability gives∫ b

a

(−λ1u0 − a(x)u0)u0 dx = 0, or λ1 = −
∫ b

a
a(x)u0(x)2dx∫ b

a
u0(x)2dx

.
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Example: diffusion through a slender body

Consider a domain which is a thin tube, described in cylindrical coordinates as
{(r ,Z)|0 < Z < L, r < R0f (z/L)} where R0 � L. Want to solve the steady
state diffusion equation

∆T (r ,Z) = Trr +
1

r
Tr + TZZ = 0,

T (r , 0) = 0, T (r , 1) = T0, ∇T · n = 0 on r = f (z/L).

Here the outward normal is proportional to (1,−(R0/L)f ′(z/L)).

Nondimensionalize u = T/T0, ρ = r/R0, z = Z/L, giving

uρρ+
1

ρ
uρ+ε2uzz = 0, u(ρ, 0) = 0, u(ρ, 1) = 1, uρ = ε2f ′(z)uz on ρ = f (z).

where ε = R0/L.
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Example: diffusion through a slender body, cont.

Expanding u = u0 + εu1 + . . . leads to

Lu0 = u0ρρ +
1

ρ
= 0, 0 ≤ ρ < f (z), u0ρ(f (z), z) = 0,

Lu1 = −u0zz = 0 ≤ ρ < f (z), u1ρ(f (z), z) = f ′(z)u0z .

The solution for the first is u0 = A(z). The linear operator L is self adjoint

with respect to the inner product
∫ f (z)

0
v1(ρ)v2(ρ)ρdρ. The second equation

therefore has a solvability condition obtained by multiplying by the
eigenfunction 1 and integrating:

−
∫ f (z)

0

u0zzρdρ =

∫ f (z)

0

(ρu1ρ)ρdρ = ρu1ρ
∣∣∣f (z)
0

= f (z)f ′(z)u0z .

Thus f (z)2A′′(z) + f (z)f ′(z)A′(z) = 0, which can be compactly written as[
f (z)2Az

]
z

= 0.

This is just one dimensional steady state diffusion with variable diffusivity.
Using A(0) = 0 and A(1) = 1, one can solve by direct integration

A(z) =

∫ z

0
f (z ′)2dz ′∫ 1

0
f (z ′)2dz ′

.
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