Asymptotic Methods

Solvability conditions and eigenvalue problems

The Fredholm Alternative

The Fredholm alternative is a fundamental result from linear algebra, concerning the ability to solve $L x=b$ where L is a matrix or linear operator.

The Fredholm Alternative

The Fredholm alternative is a fundamental result from linear algebra, concerning the ability to solve $L x=b$ where L is a matrix or linear operator. Singular linear problems are frequently encountered in deriving asymptotic expansions. A useful form of the Fredholm alternative is

Fredholm

Suppose that $L: V \rightarrow V$ is a linear mapping from a Hilbert space V to itself (e.g. a square matrix). If the adjoint of L has a nullspace spanned by $v_{1}, v_{2}, \ldots, v_{k}$, then necessary and sufficient conditions to solve $L v=b$ are

$$
<v_{i}, b>=0, \quad i=1,2, \ldots, k
$$

The Fredholm Alternative

The Fredholm alternative is a fundamental result from linear algebra, concerning the ability to solve $L x=b$ where L is a matrix or linear operator. Singular linear problems are frequently encountered in deriving asymptotic expansions. A useful form of the Fredholm alternative is

Fredholm

Suppose that $L: V \rightarrow V$ is a linear mapping from a Hilbert space V to itself (e.g. a square matrix). If the adjoint of L has a nullspace spanned by $v_{1}, v_{2}, \ldots, v_{k}$, then necessary and sufficient conditions to solve $L v=b$ are

$$
<v_{i}, b>=0, \quad i=1,2, \ldots, k
$$

Remarks:

- Proof is easy: simply take the inner product of both sides with each v_{i}, and use the definition of adjoint.
- Notice that the solution of $L x=b$ will not be unique, but rather the sum of a particular solution plus the nullspace of L.
- For boundary value problems, the boundary conditions also come into play.

Perturbation of finite dimensional linear problems

If A, B are nonsingular, symmetric, square matrices, then $(A+\epsilon B) x=y$ admits a regular expansion $x=x_{0}+\epsilon x_{1}+\epsilon^{2} x_{2}+\ldots$. Inserting this and equating powers of ϵ gives a hierarchy of linear problems

$$
A x_{n}=-B x_{n-1}, \quad n=1,2,3, \ldots
$$

Suppose instead that A has a one dimensional nullspace spanned by v. Could it be that $A+\epsilon B$ is nonsingular?

Perturbation of finite dimensional linear problems

If A, B are nonsingular, symmetric, square matrices, then $(A+\epsilon B) x=y$ admits a regular expansion $x=x_{0}+\epsilon x_{1}+\epsilon^{2} x_{2}+\ldots$. Inserting this and equating powers of ϵ gives a hierarchy of linear problems

$$
A x_{n}=-B x_{n-1}, \quad n=1,2,3, \ldots
$$

Suppose instead that A has a one dimensional nullspace spanned by v. Could it be that $A+\epsilon B$ is nonsingular? Let's solve $(A+\epsilon B) x=y$. Since its unlikely that $A x=y$ has any solution, this choice of dominant balance is not going to work. Instead, expand $x=\epsilon^{-1} x_{-1}+x_{0}+\ldots$, giving

$$
\begin{aligned}
A x_{-1} & =0 \\
A x_{0} & =y-B x_{-1}
\end{aligned}
$$

Perturbation of finite dimensional linear problems

If A, B are nonsingular, symmetric, square matrices, then $(A+\epsilon B) x=y$ admits a regular expansion $x=x_{0}+\epsilon x_{1}+\epsilon^{2} x_{2}+\ldots$. Inserting this and equating powers of ϵ gives a hierarchy of linear problems

$$
A x_{n}=-B x_{n-1}, \quad n=1,2,3, \ldots
$$

Suppose instead that A has a one dimensional nullspace spanned by v. Could it be that $A+\epsilon B$ is nonsingular? Let's solve $(A+\epsilon B) x=y$. Since its unlikely that $A x=y$ has any solution, this choice of dominant balance is not going to work. Instead, expand $x=\epsilon^{-1} x_{-1}+x_{0}+\ldots$, giving

$$
\begin{aligned}
A x_{-1} & =0 \\
A x_{0} & =y-B x_{-1}
\end{aligned}
$$

The first equation has solution $x_{-1}=c v$ where c is yet undetermined.

Perturbation of finite dimensional linear problems

If A, B are nonsingular, symmetric, square matrices, then $(A+\epsilon B) x=y$ admits a regular expansion $x=x_{0}+\epsilon x_{1}+\epsilon^{2} x_{2}+\ldots$. Inserting this and equating powers of ϵ gives a hierarchy of linear problems

$$
A x_{n}=-B x_{n-1}, \quad n=1,2,3, \ldots
$$

Suppose instead that A has a one dimensional nullspace spanned by v. Could it be that $A+\epsilon B$ is nonsingular? Let's solve $(A+\epsilon B) x=y$. Since its unlikely that $A x=y$ has any solution, this choice of dominant balance is not going to work. Instead, expand $x=\epsilon^{-1} x_{-1}+x_{0}+\ldots$, giving

$$
\begin{aligned}
A x_{-1} & =0 \\
A x_{0} & =y-B x_{-1}
\end{aligned}
$$

The first equation has solution $x_{-1}=c v$ where c is yet undetermined. The second equation can only be solved if the right had side is orthogonal to v, which means

$$
v \cdot(y-c B v)=0, \quad \text { or } \quad c=(y \cdot v) /(B v \cdot v)
$$

Notice this "selects" the value of c. This process can be repeated for other terms in the expansion.

Perturbation of eigenvalues

If a matrix is altered slightly, how do its eigenvalues change?

Perturbation of eigenvalues

If a matrix is altered slightly, how do its eigenvalues change?
Consider $(A+\epsilon B) x=\lambda x$, where A, B are square matrices, Suppose that $\left(x_{0}, \lambda_{0}\right)$ is a known eigenvector/value pair for A.

Perturbation of eigenvalues

If a matrix is altered slightly, how do its eigenvalues change?
Consider $(A+\epsilon B) x=\lambda x$, where A, B are square matrices, Suppose that $\left(x_{0}, \lambda_{0}\right)$ is a known eigenvector/value pair for A.
Expand both $x=x_{0}+\epsilon x_{1}+\ldots$ and $\lambda=\lambda_{0}+\epsilon \lambda_{1}+\ldots$, so that the leading order problem $A x_{0}=\lambda x_{0}$ is automatically solved. The next order gives

$$
\left(A-\lambda_{0} I\right) x_{1}=-B x_{0}+\lambda_{1} x_{0} .
$$

Perturbation of eigenvalues

If a matrix is altered slightly, how do its eigenvalues change?
Consider $(A+\epsilon B) x=\lambda x$, where A, B are square matrices, Suppose that $\left(x_{0}, \lambda_{0}\right)$ is a known eigenvector/value pair for A.
Expand both $x=x_{0}+\epsilon x_{1}+\ldots$ and $\lambda=\lambda_{0}+\epsilon \lambda_{1}+\ldots$, so that the leading order problem $A x_{0}=\lambda x_{0}$ is automatically solved. The next order gives

$$
\left(A-\lambda_{0} I\right) x_{1}=-B x_{0}+\lambda_{1} x_{0}
$$

The matrix $A-\lambda_{0} I$ is necessarily singular, and therefore so is the adjoint $A^{*}-\lambda_{0} I$. Letting x^{*} be the adjoint eigenvector solving $\left(A^{*}-\lambda_{0} I\right) x^{*}=0$, Fredholm implies

$$
\left(\lambda_{1} x_{0}-B x_{0}\right) \cdot x^{*}=0, \quad \text { or } \quad \lambda_{1}=\frac{x^{*} \cdot B x_{0}}{x^{*} \cdot x_{0}}
$$

Solvability of boundary value problems

Consider the standard Sturm-Liouville boundary value problem for $u=u(x)$,

$$
\mathcal{L} u \equiv\left(p(x) u^{\prime}\right)^{\prime}+q(x) u=r(x), \quad u(a)=u_{a}, \quad u(b)=u_{b} .
$$

If the operator \mathcal{L} is not singular (no zero eigenvalues), this problem has a unique solution.

Solvability of boundary value problems

Consider the standard Sturm-Liouville boundary value problem for $u=u(x)$,

$$
\mathcal{L} u \equiv\left(p(x) u^{\prime}\right)^{\prime}+q(x) u=r(x), \quad u(a)=u_{a}, \quad u(b)=u_{b}
$$

If the operator \mathcal{L} is not singular (no zero eigenvalues), this problem has a unique solution.

On the other hand, if \mathcal{L} has a nullspace spanned by the eigenfunction $v(x)$, then a solvability condition is derived by multiplying the equation by $v(x)$ and integrating over the domain. The result is

$$
\int_{a}^{b} v(x) r(x) d x+\left[p(x)\left(u^{\prime}(x) v(x)-u(x) v^{\prime}(x)\right)\right]_{a}^{b}=0
$$

This is both a necessary and sufficient condition to find a solution.

Example: a perturbed SL eigenvalue problem

Consider

$$
u^{\prime \prime}+q(x) u=0, \quad u(0)=0=u(L) .
$$

where $q(x)=\lambda+\epsilon a(x)$. For $\epsilon=0$, this is a standard eigenvalue problem, which has solutions

$$
u_{0}=\sin (n \pi x / L), \quad \lambda_{0}=\left(\frac{n \pi}{L}\right)^{2}, \quad n=1,2,3, \ldots
$$

Example: a perturbed SL eigenvalue problem

Consider

$$
u^{\prime \prime}+q(x) u=0, \quad u(0)=0=u(L) .
$$

where $q(x)=\lambda+\epsilon a(x)$. For $\epsilon=0$, this is a standard eigenvalue problem, which has solutions

$$
u_{0}=\sin (n \pi x / L), \quad \lambda_{0}=\left(\frac{n \pi}{L}\right)^{2}, \quad n=1,2,3, \ldots
$$

We can perturb around a particular eigenpair by expanding $\lambda=\lambda_{0}+\epsilon \lambda_{1}+\ldots$ and $u=u_{0}+\epsilon u_{1}+\ldots$, giving

$$
\mathcal{L} u_{1} \equiv u_{1}^{\prime \prime}+\lambda_{0} u_{1}=-\lambda_{1} u_{0}-a(x) u_{0} .
$$

Since λ_{0} is an eigenvalue, \mathcal{L} is singular (and self adjoint) with nullspace spanned by u_{0}. Solvability gives

$$
\int_{a}^{b}\left(-\lambda_{1} u_{0}-a(x) u_{0}\right) u_{0} d x=0, \quad \text { or } \quad \lambda_{1}=-\frac{\int_{a}^{b} a(x) u_{0}(x)^{2} d x}{\int_{a}^{b} u_{0}(x)^{2} d x}
$$

Example: diffusion through a slender body

Consider a domain which is a thin tube, described in cylindrical coordinates as $\left\{(r, Z) \mid 0<Z<L, r<R_{0} f(z / L)\right\}$ where $R_{0} \ll L$. Want to solve the steady state diffusion equation

$$
\begin{aligned}
\Delta T(r, Z) & =T_{r r}+\frac{1}{r} T_{r}+T_{z Z}=0, \\
T(r, 0) & =0, \quad T(r, 1)=T_{0}, \quad \nabla T \cdot n=0 \quad \text { on } r=f(z / L) .
\end{aligned}
$$

Here the outward normal is proportional to $\left(1,-\left(R_{0} / L\right) f^{\prime}(z / L)\right)$.

Example: diffusion through a slender body

Consider a domain which is a thin tube, described in cylindrical coordinates as $\left\{(r, Z) \mid 0<Z<L, r<R_{0} f(z / L)\right\}$ where $R_{0} \ll L$. Want to solve the steady state diffusion equation

$$
\begin{aligned}
\Delta T(r, Z) & =T_{r r}+\frac{1}{r} T_{r}+T_{z z}=0, \\
T(r, 0) & =0, \quad T(r, 1)=T_{0}, \quad \nabla T \cdot n=0 \quad \text { on } r=f(z / L)
\end{aligned}
$$

Here the outward normal is proportional to $\left(1,-\left(R_{0} / L\right) f^{\prime}(z / L)\right)$.
Nondimensionalize $u=T / T_{0}, \rho=r / R_{0}, z=Z / L$, giving
$u_{\rho \rho}+\frac{1}{\rho} u_{\rho}+\epsilon^{2} u_{z z}=0, \quad u(\rho, 0)=0, \quad u(\rho, 1)=1, \quad u_{\rho}=\epsilon^{2} f^{\prime}(z) u_{z} \quad$ on $\rho=f(z)$.
where $\epsilon=R_{0} / L$.

Example: diffusion through a slender body, cont.

Expanding $u=u_{0}+\epsilon u_{1}+\ldots$ leads to

$$
\begin{aligned}
& \mathcal{L} u_{0}=u_{0 \rho \rho}+\frac{1}{\rho}=0, \quad 0 \leq \rho<f(z), \quad u_{0 \rho}(f(z), z)=0 \\
& \mathcal{L} u_{1}=-u_{0 z z}=0 \leq \rho<f(z), \quad u_{1 \rho}(f(z), z)=f^{\prime}(z) u_{0 z}
\end{aligned}
$$

The solution for the first is $u_{0}=A(z)$. The linear operator \mathcal{L} is self adjoint with respect to the inner product $\int_{0}^{f(z)} v_{1}(\rho) v_{2}(\rho) \rho d \rho$. The second equation therefore has a solvability condition obtained by multiplying by the eigenfunction 1 and integrating:

$$
-\int_{0}^{f(z)} u_{0 z z} \rho d \rho=\int_{0}^{f(z)}\left(\rho u_{1 \rho}\right)_{\rho} d \rho=\left.\rho u_{1 \rho}\right|_{0} ^{f(z)}=f(z) f^{\prime}(z) u_{0 z}
$$

Example: diffusion through a slender body, cont.

Expanding $u=u_{0}+\epsilon u_{1}+\ldots$ leads to

$$
\begin{aligned}
& \mathcal{L} u_{0}=u_{0 \rho \rho}+\frac{1}{\rho}=0, \quad 0 \leq \rho<f(z), \quad u_{0 \rho}(f(z), z)=0 \\
& \mathcal{L} u_{1}=-u_{0 z z}=0 \leq \rho<f(z), \quad u_{1 \rho}(f(z), z)=f^{\prime}(z) u_{0 z}
\end{aligned}
$$

The solution for the first is $u_{0}=A(z)$. The linear operator \mathcal{L} is self adjoint with respect to the inner product $\int_{0}^{f(z)} v_{1}(\rho) v_{2}(\rho) \rho d \rho$. The second equation therefore has a solvability condition obtained by multiplying by the eigenfunction 1 and integrating:

$$
-\int_{0}^{f(z)} u_{0 z z} \rho d \rho=\int_{0}^{f(z)}\left(\rho u_{1 \rho}\right)_{\rho} d \rho=\left.\rho u_{1 \rho}\right|_{0} ^{f(z)}=f(z) f^{\prime}(z) u_{0 z}
$$

Thus $f(z)^{2} A^{\prime \prime}(z)+f(z) f^{\prime}(z) A^{\prime}(z)=0$, which can be compactly written as

$$
\left[f(z)^{2} A_{z}\right]_{z}=0
$$

This is just one dimensional steady state diffusion with variable diffusivity. Using $A(0)=0$ and $A(1)=1$, one can solve by direct integration

$$
A(z)=\frac{\int_{0}^{z} f\left(z^{\prime}\right)^{2} d z^{\prime}}{\int_{0}^{1} f\left(z^{\prime}\right)^{2} d z^{\prime}}
$$

