Asymptotic Methods

Method of stationary phase
Recall the Riemann-Lebesgue lemma:

\[\int_{-\infty}^{\infty} f(t)e^{ixt} dt \to 0, \quad x \to 0. \]
Recall the Riemann-Lebesgue lemma:
\[\int_{-\infty}^{\infty} f(t)e^{ixt} \, dt \to 0, \quad x \to 0. \]

More generally, if \(I = \int_a^b f(t)e^{ix\psi(t)} \, dt \), then integration by parts can be used to obtain
\[\frac{f(t)}{ix\psi'(t)} e^{ix\psi(t)} \bigg|_{t=a}^{t=b} - \frac{1}{ix\psi'(t)} \int_a^b \left(\frac{f(t)}{\psi'(t)} \right)' e^{ix\psi(t)} \, dt. \]

Provided \(\psi' \) is never zero, IBP can be repeated, and \(I \sim 1/x \).
Highly oscillatory integrals

Recall the Riemann-Lebesgue lemma:

$$\int_{-\infty}^{\infty} f(t) e^{ixt} dt \to 0, \quad x \to 0.$$

More generally, if $$I = \int_{a}^{b} f(t) e^{ix\psi(t)} dt$$, then integration by parts can be used to obtain

$$\left. \frac{f(t)}{ix\psi'(t)} e^{ix\psi(t)} \right|_{t=a}^{t=b} - \frac{1}{ix\psi'(t)} \int_{a}^{b} \left(\frac{f(t)}{\psi'(t)} \right)' e^{ix\psi(t)} dt.$$

Provided $$\psi'$$ is never zero, IBP can be repeated, and $$I \sim 1/x$$.

But what if $$\psi'(x) = 0$$? Suppose that $$\psi \sim \psi(a) + \psi^{(p)}(a)(t - a)^p/p!$$ with $$p \geq 2$$. Split integral $$\int_{a}^{a+\epsilon} + \int_{a+\epsilon}^{b}$$, so that the latter integral is $$O(1/x)$$.

Remark: in computing integrals $$\int_{0}^{\infty} e^{ias} ds$$, use substitution $$s = e^{\pm i\pi/2} (u/|a|)^{1/p}$$.

Highly oscillatory integrals

Recall the Riemann-Lebesgue lemma:

$$\int_{-\infty}^{\infty} f(t)e^{ixt} dt \to 0, \quad x \to 0.$$

More generally, if $I = \int_{a}^{b} f(t)e^{ix\psi(t)} dt$, then integration by parts can be used to obtain

$$\left. \frac{f(t)}{ix\psi'(t)} e^{ix\psi(t)} \right|_{t=a}^{t=b} - \frac{1}{ix\psi'(t)} \int_{a}^{b} \left(\frac{f(t)}{\psi'(t)} \right)' e^{ix\psi(t)} x dt.$$

Provided ψ' is never zero, IBP can be repeated, and $I \sim 1/x$.

But what if $\psi'(x) = 0$? Suppose that $\psi \sim \psi(a) + \psi^{(p)}(a)(t - a)^p / p!$ with $p \geq 2$. Split integral $\int_{a}^{a+\epsilon} + \int_{a+\epsilon}^{b}$, so that the latter integral is $O(1/x)$.

The former integral can be estimated by inserting expansion for ψ

$$f(a)e^{ix\psi(a)} \int_{a}^{a+\epsilon} \exp(ix\psi^{(p)}(a)(t - a)^p / p!) dt$$

Integral decays faster and faster as $x \to \infty$, so to leading order it is

$$\sim \int_{a}^{\infty} \exp(ix\psi^{(p)}(t - a)^p / p]) dt = e^{\pm i\pi/2p} \left[\frac{p!}{x|\psi^{(p)}(a)|} \right]^{1/p} \Gamma(1/p)/p.$$

where $+$ is chosen for $\psi^{(p)}(a) > 0$ etc.
Highly oscillatory integrals

Recall the Riemann-Lebesgue lemma:
\[\int_{-\infty}^{\infty} f(t)e^{ixt} \, dt \to 0, \quad x \to 0. \]

More generally, if \(I = \int_a^b f(t)e^{ix\psi(t)} \, dt \), then integration by parts can be used to obtain
\[\frac{f(t)}{ix\psi'(t)} e^{ix\psi(t)} \bigg|_{t=a}^{t=b} - \frac{1}{ix\psi'(t)} \int_a^b \left(\frac{f(t)}{\psi'(t)} \right)' e^{ix\psi(t)} \, dt. \]

Provided \(\psi' \) is never zero, IBP can be repeated, and \(I \sim 1/x \).

But what if \(\psi'(x) = 0 \)? Suppose that \(\psi \sim \psi(a) + \psi^{(p)}(a)(t - a)^p/p! \) with \(p \geq 2 \). Split integral \(\int_a^{a+\epsilon} + \int_{a+\epsilon}^b \), so that the latter integral is \(O(1/x) \).

The former integral can be estimated by inserting expansion for \(\psi \)
\[f(a)e^{ix\psi(a)} \int_a^{a+\epsilon} \exp(ix\psi^{(p)}(a)(t - a)^p/p!)]dt \]

Integral decays faster and faster as \(x \to \infty \), so to leading order it is
\[\sim \int_a^{\infty} \exp(ix\psi^{(p)}(t - a)^p/p])dt = e^{\pm i\pi/2p} \left[\frac{p!}{x|\psi^{(p)}(a)|} \right]^{1/p} \Gamma(1/p)/p. \]

where + is chosen for \(\psi^{(p)}(a) > 0 \) etc.

Remark: in computing integrals \(\int_0^{\infty} e^{ias^p} \, ds \), use substitution \(s = e^{\pm i\pi/2p(u/|a|)} \).
The points where $\phi'(x) = 0$ are called stationary phase points. Just like Laplace points, the integral’s main contribution can be approximated by expanding around them.
The points where $\phi'(x) = 0$ are called stationary phase points. Just like Laplace points, the integral's main contribution can be approximated by expanding around them.

Example. Consider

$$\int_{-\infty}^{\infty} \frac{\exp[ix(t - t^2)]}{1 + t^2} dt, \quad x \to \infty.$$
The points where $\phi'(x) = 0$ are called stationary phase points. Just like Laplace points, the integral’s main contribution can be approximated by expanding around them.

Example. Consider

$$\int_{-\infty}^{\infty} \frac{\exp[ix(t-t^2)]}{1+t^2} dt, \quad x \to \infty.$$

The stationary phase point is $t = 1/2$. Expanding $t - t^2 = 1/4 - (t - 1/2)^2$ and $1/(1 + t^2) \approx 4/5$, the leading order estimate is

$$\frac{4}{5} \int_{-\infty}^{\infty} \exp(i x/4) \exp(-i x(t - 1/2)^2) dt = \frac{4}{5} \exp(i x/4) e^{-i \pi/4} \sqrt{\pi/x}.$$
Asymptotics the Bessel integral

Consider

\[J_n(x) = \frac{1}{\pi} \int_0^{\pi} \cos(x \sin t - nt) \, dt = \text{Re} \int_0^{\pi} e^{-int} e^{ix \sin t} \, dt. \]
Asymptotics the Bessel integral

Consider

\[J_n(x) = \frac{1}{\pi} \int_0^{\pi} \cos(x \sin t - nt) \, dt = \text{Re} \int_0^{\pi} e^{-int} e^{ix \sin t} \, dt. \]

For \(x \to 0 \), this is not a stationary phase integral, but the exponential can be expanded directly:

\[J_n \sim \text{Re} \frac{1}{\pi} \int_0^{\pi} e^{-int} \sum_{k=0}^{\infty} \frac{(ix \sin t)^k}{k!} \, dt. \]

Note \((i \sin t)^k = (1/2)^k (e^{ikt} + \ldots + e^{-ikt})\). By orthogonality, the first nonzero term in the sum is where \(k = n \), thus

\[J_n \sim \frac{x^n}{\pi n!} \int_0^{\pi} \frac{1}{2^n} e^{-int} e^{int} \, dt = \frac{(x/2)^n}{n!}, \quad x \to 0. \]
Asymptotics the Bessel integral

Consider
\[J_n(x) = \frac{1}{\pi} \int_0^{\pi} \cos(x \sin t - nt) \, dt = \text{Re} \int_0^{\pi} e^{-int} e^{ix \sin t} \, dt. \]

For \(x \to 0 \), this is not a stationary phase integral, but the exponential can be expanded directly:
\[J_n \sim \text{Re} \frac{1}{\pi} \int_0^{\pi} e^{-int} \sum_{k=0}^{\infty} \frac{(ix \sin t)^k}{k!} \, dt. \]

Note \((i \sin t)^k = (1/2)^k (e^{ikt} + \ldots + e^{-ikt})\). By orthogonality, the first nonzero term in the sum is where \(k = n \), thus
\[J_n \sim \frac{x^n}{\pi n!} \int_0^{\pi} \frac{1}{2^n} e^{-int} e^{int} \, dt = (x/2)^n / n!, \quad x \to 0. \]

The other limit \(x \to \infty \) has a stationary phase points where \(\cos t = 0 \) or \(t = \pi/2 \). Thus
\[J_n \sim \frac{1}{\pi} \text{Re} \int_{-\infty}^{\infty} e^{-in\pi/2} e^{ix(1-(t-\pi/2)^2)/2} \, dt = \sqrt{2/(\pi x)} \cos(x - n\pi/2 - \pi/4). \]
What if \(f(0) = 0 \) for integral \(\int f(t)e^{ix\psi(t)} \, dt \) with stationary phase point \(t = 0 \)?

Take \(f(t) \sim at + bt^2 \) for \(t \to 0 \), and \(f > 0 \) bounded, and consider

\[
I(x) = \int_0^\infty f(t)e^{ixt^2} \, dt
\]
Integrands that vanish at stationary phase point

What if $f(0) = 0$ for integral $\int f(t)e^{ix\psi(t)} \, dt$ with stationary phase point $t = 0$? Take $f(t) \sim at + bt^2$ for $t \to 0$, and $f > 0$ bounded, and consider

$$I(x) = \int_0^\infty f(t)e^{ixt^2} \, dt$$

Cannot just use leading order expansion for $f()$, since

$$\int_0^\infty (at)e^{ixt^2} \, dt = \infty.$$
Integrands that vanish at stationary phase point

What if \(f(0) = 0 \) for integral \(\int f(t)e^{ix\psi(t)} \, dt \) with stationary phase point \(t = 0 \)? Take \(f(t) \sim at + bt^2 \) for \(t \to 0 \), and \(f > 0 \) bounded, and consider

\[
I(x) = \int_0^\infty f(t)e^{ixt^2} \, dt
\]

Cannot just use leading order expansion for \(f() \), since

\[
\int_0^\infty (at)e^{ixt^2} \, dt = \infty.
\]

Trick: integrate by parts first, which brings integral into standard form.

\[
I(x) = \int_0^\infty \left(\frac{f(t)}{t} \right) te^{ixt^2} \, dt
\]

\[
= \frac{e^{ixt^2}}{2ix} \left. \frac{f(t)}{t} \right|_0^\infty - \frac{1}{2ix} \int_0^\infty \left(\frac{f(t)}{t} \right)' e^{ixt^2} \, dt
\]

\[
= -\frac{a}{2ix} - \frac{b}{2ix} \int_0^\infty e^{ixt^2} \, dt
\]

\[
= -\frac{a}{2ix} - \frac{b}{2ix} \left(\frac{\pi}{x^3} \right)^{1/2} e^{i\pi^4}.
\]