Asymptotic Methods

The method of steepest descent

Steepest descent integrals

Main observation: oscillatory integrals can often be turned into exponentially decaying ones by deforming the complex contour, e.g.

$$
\int_{0}^{\infty} e^{i x^{2}} d x=e^{i \pi / 4} \int_{0}^{\infty} e^{-u^{2}} d u, \quad x=e^{i \pi / 4} u
$$

Steepest descent integrals

Main observation: oscillatory integrals can often be turned into exponentially decaying ones by deforming the complex contour, e.g.

$$
\int_{0}^{\infty} e^{i x^{2}} d x=e^{i \pi / 4} \int_{0}^{\infty} e^{-u^{2}} d u, \quad x=e^{i \pi / 4} u
$$

To make this work in practice for integrals of the form

$$
\int_{C} f(t) e^{x \rho(t)} d t
$$

need to find contours for which $\left|e^{\rho(t)}\right|$ increases (or decreases) the fastest; these are steepest descent contours.

Steepest descent integrals

Main observation: oscillatory integrals can often be turned into exponentially decaying ones by deforming the complex contour, e.g.

$$
\int_{0}^{\infty} e^{i x^{2}} d x=e^{i \pi / 4} \int_{0}^{\infty} e^{-u^{2}} d u, \quad x=e^{i \pi / 4} u
$$

To make this work in practice for integrals of the form

$$
\int_{C} f(t) e^{x \rho(t)} d t
$$

need to find contours for which $\left|e^{\rho(t)}\right|$ increases (or decreases) the fastest; these are steepest descent contours.

■ Note that $\left|e^{\rho(t)}\right|=e^{\operatorname{Re}(\rho(t))}$. We therefore want contours orthogonal to the level sets of $\operatorname{Re}(\rho(t))$; by the Cauchy-Riemann equations, these are generally the level sets of $\operatorname{Im}(\rho(t))$.

Steepest descent integrals

Main observation: oscillatory integrals can often be turned into exponentially decaying ones by deforming the complex contour, e.g.

$$
\int_{0}^{\infty} e^{i x^{2}} d x=e^{i \pi / 4} \int_{0}^{\infty} e^{-u^{2}} d u, \quad x=e^{i \pi / 4} u
$$

To make this work in practice for integrals of the form

$$
\int_{C} f(t) e^{x \rho(t)} d t
$$

need to find contours for which $\left|e^{\rho(t)}\right|$ increases (or decreases) the fastest; these are steepest descent contours.

- Note that $\left|e^{\rho(t)}\right|=e^{\operatorname{Re}(\rho(t))}$. We therefore want contours orthogonal to the level sets of $\operatorname{Re}(\rho(t))$; by the Cauchy-Riemann equations, these are generally the level sets of $\operatorname{Im}(\rho(t))$.
- Usually, $\left|e^{\rho(t)}\right|$ will be largest on certain points on the steepest descent contour, and will decay exponentially away from these points. In other words, we have transformed the problem into a Laplace integral.

Steepest descent integrals

Main observation: oscillatory integrals can often be turned into exponentially decaying ones by deforming the complex contour, e.g.

$$
\int_{0}^{\infty} e^{i x^{2}} d x=e^{i \pi / 4} \int_{0}^{\infty} e^{-u^{2}} d u, \quad x=e^{i \pi / 4} u
$$

To make this work in practice for integrals of the form

$$
\int_{C} f(t) e^{x \rho(t)} d t
$$

need to find contours for which $\left|e^{\rho(t)}\right|$ increases (or decreases) the fastest; these are steepest descent contours.

- Note that $\left|e^{\rho(t)}\right|=e^{\operatorname{Re}(\rho(t))}$. We therefore want contours orthogonal to the level sets of $\operatorname{Re}(\rho(t))$; by the Cauchy-Riemann equations, these are generally the level sets of $\operatorname{Im}(\rho(t))$.
- Usually, $\left|e^{\rho(t)}\right|$ will be largest on certain points on the steepest descent contour, and will decay exponentially away from these points. In other words, we have transformed the problem into a Laplace integral.
- The Laplace points are generally where $\rho^{\prime}(t)=0$; these are saddle points. Often, simply identifying the saddle points (instead of the whole contour) is sufficient.

Example

Consider

$$
\int_{-\infty}^{\infty} e^{i x \cosh t} d t, \quad x \rightarrow \infty
$$

Only the leading order term can be computed with stationary phase.

Example

Consider

$$
\int_{-\infty}^{\infty} e^{i x \cosh t} d t, \quad x \rightarrow \infty
$$

Only the leading order term can be computed with stationary phase. Writing

$$
i \cosh t=-\sinh u \sin v+i \cosh u \cos v, \quad t=u+i v
$$

the steepest descent contours are level sets of $\cosh u \cos v$; symmetry suggests a contour through the origin $\cosh u \cos v=1$ is the correct choice.

Example

Consider

$$
\int_{-\infty}^{\infty} e^{i x \cosh t} d t, \quad x \rightarrow \infty
$$

Only the leading order term can be computed with stationary phase. Writing

$$
i \cosh t=-\sinh u \sin v+i \cosh u \cos v, \quad t=u+i v
$$

the steepest descent contours are level sets of $\cosh u \cos v$; symmetry suggests a contour through the origin $\cosh u \cos v=1$ is the correct choice.
One way to parameterize this curve is to use the real part $\phi=\sinh u \sin v$ as the parameter. With this choice, the deformed integral can be written

$$
2 \int_{0}^{\infty} \frac{e^{-\phi x} e^{i x}}{i \sqrt{\phi}(2 i-\phi)^{1 / 2}} d \phi
$$

where the principal square root is assumed. A binomial expansion of the denominator produces

$$
\begin{aligned}
& \frac{2}{\sqrt{2 i}} e^{i x} \int_{0}^{\infty} e^{-\phi x}\left(\frac{1}{\sqrt{\phi}}-\frac{i \sqrt{\phi}}{4}+\ldots\right) d \phi \\
& =\sqrt{2} e^{i \pi / 4} e^{i x}\left(\Gamma(1 / 2) x^{-1 / 2}-\frac{i \Gamma(3 / 2)}{4} x^{-3 / 2}+\ldots\right)
\end{aligned}
$$

Example

Consider

$$
I(x)=\int_{0}^{1} \ln t e^{i x t} d t, x \rightarrow \infty
$$

which is not of stationary phase type. The steepest descent curves are where $\operatorname{Re} t$ is a constant. Deform contour to a union of three straight line contours:

Example, cont.

Taking C_{2} to infinity, we are left with

$$
\int_{C_{1}}=i \int_{0}^{\infty} \ln (i s) e^{-x s} d s=\frac{-i \ln x-i \gamma+\pi / 2}{x}
$$

and

$$
\begin{aligned}
\int_{C_{3}} & =-i \int_{0}^{\infty} \ln (1+i s) e^{i x} e^{-x s} d s \\
& =(-i) e^{i x} \int_{0}^{\infty}\left(i s+s^{2} / 2-i s^{3} / 3+\ldots\right) e^{-x s} d s \\
& =-i e^{i x}\left(i / x^{2}+1 / x^{3}+\ldots\right)
\end{aligned}
$$

Use of approximate contours near a saddle point

For integrals

$$
I=\int_{C} f(t) e^{x \rho(t)} d t, \quad x \rightarrow \infty
$$

suppose that C can be deformed through a saddle where $\rho^{\prime}\left(t_{0}\right)=0$ and $\rho^{\prime \prime}\left(t_{0}\right) \neq 0$, so that $\operatorname{Re} \rho\left(t_{0}\right)$ is a maximum along the contour.

For integrals

$$
I=\int_{C} f(t) e^{x \rho(t)} d t, \quad x \rightarrow \infty
$$

suppose that C can be deformed through a saddle where $\rho^{\prime}\left(t_{0}\right)=0$ and $\rho^{\prime \prime}\left(t_{0}\right) \neq 0$, so that $\operatorname{Re} \rho\left(t_{0}\right)$ is a maximum along the contour.

The leading order approximation is entirely dictated by the integrand near the saddle, and therefore it suffices to write

$$
I \sim \int_{C} f\left(t_{0}\right) e^{x\left(\rho\left(t_{0}\right)+\rho^{\prime \prime}\left(t_{0}\right)\left(t-t_{0}\right) / 2\right.} d t, \quad x \rightarrow \infty
$$

Therefore we do not need to know the steepest descent contour exactly. For this approximation, the contour is a line that can be parameterized $t=t_{0}+s e^{i \theta}$, where θ is chosen so that the exponential will decay and not oscillate, i.e.

$$
\arg \left(\rho^{\prime \prime}\left(t_{0}\right) e^{2 i \theta}\right)=\pi, \quad \theta=\left(\pi-\arg \left(\rho^{\prime \prime}\left(t_{0}\right)\right) / 2\right.
$$

Example

Consider

$$
I(x)=\int_{-\infty}^{\infty} e^{-x t^{2}} \cos (x t) f(t) d t=\operatorname{Re} \int_{-\infty}^{\infty} e^{-x\left(t^{2}-i t\right)} f(t) d t, \quad x \rightarrow \infty
$$

Example

Consider

$$
I(x)=\int_{-\infty}^{\infty} e^{-x t^{2}} \cos (x t) f(t) d t=\operatorname{Re} \int_{-\infty}^{\infty} e^{-x\left(t^{2}-i t\right)} f(t) d t, \quad x \rightarrow \infty .
$$

The saddle is where $d / d t\left(t^{2}-i t\right)=0$ or $t_{0}=i / 2$, and $d^{2} / d t^{2}\left(t^{2}-i t\right)=-2$.
The steepest descent contour is then approximately parameterized by $t=i / 2+s e^{i \theta}$ where $\theta=0$, leading to

$$
I(x) \sim \operatorname{Re} \int_{-\infty}^{\infty} e^{-x\left(1 / 4+s^{2}\right)} f(i / 2) d t=\operatorname{Re} f(i / 2) e^{-x / 4} \sqrt{\frac{\pi}{x}} .
$$

The Airy differential equation is

$$
y^{\prime \prime}-x y=0, \quad-\infty<x<\infty
$$

Its decaying solution by Fourier transform is

$$
y(x) \equiv \operatorname{Ai}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i\left(k x+k^{3} / 3\right)} d k
$$

The Airy differential equation is

$$
y^{\prime \prime}-x y=0, \quad-\infty<x<\infty
$$

Its decaying solution by Fourier transform is

$$
y(x) \equiv \operatorname{Ai}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i\left(k x+k^{3} / 3\right)} d k
$$

To put this into a form suitable for steepest descents if $x>0$, let $k=x^{1 / 2} z$ so that $\operatorname{Ai}(x)=x^{1 / 2} I\left(x^{3 / 2}\right) /(2 \pi)$ with

$$
I(\lambda)=\int_{-\infty}^{\infty} e^{i \lambda\left(z+z^{3} / 3\right)} d z
$$

The Airy differential equation is

$$
y^{\prime \prime}-x y=0, \quad-\infty<x<\infty .
$$

Its decaying solution by Fourier transform is

$$
y(x) \equiv \operatorname{Ai}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i\left(k x+k^{3} / 3\right)} d k
$$

To put this into a form suitable for steepest descents if $x>0$, let $k=x^{1 / 2} z$ so that $\mathrm{Ai}(x)=x^{1 / 2} l\left(x^{3 / 2}\right) /(2 \pi)$ with

$$
I(\lambda)=\int_{-\infty}^{\infty} e^{i \lambda\left(z+z^{3} / 3\right)} d z .
$$

The saddle points are where $d / d z\left(z+z^{3} / 3\right)=0$ or $z= \pm i$. Which one to use?

Choosing the contour in the upper half plane through $z=i$, one uses the approximate contour $z=i+s$. With $i\left(z+z^{3} / 3\right) \approx-2 / 3-(z-i)^{2}, z \rightarrow i$, we get

$$
I \sim \int_{-\infty}^{\infty} e^{-\lambda\left(-2 / 3+s^{2}\right.} d s=e^{-2 \lambda / 3} \sqrt{\frac{\pi}{2 \lambda}},
$$

so that

$$
\operatorname{Ai}(x) \sim \frac{1}{2 \sqrt{\pi} x^{1 / 4}} e^{-2 x^{3 / 2} / 3}
$$

The Airy function, cont.

For $x \rightarrow-\infty$ instead, use $k=|x|^{1 / 2} z$ so $\operatorname{Ai}(x)=|x|^{1 / 2} I\left(|x|^{3 / 2}\right) /(2 \pi)$ with

$$
I(\lambda)=\int_{-\infty}^{\infty} e^{i \lambda\left(z-z^{3} / 3\right)} d z
$$

The Airy function, cont.

For $x \rightarrow-\infty$ instead, use $k=|x|^{1 / 2} z$ so $\operatorname{Ai}(x)=|x|^{1 / 2} I\left(|x|^{3 / 2}\right) /(2 \pi)$ with

$$
I(\lambda)=\int_{-\infty}^{\infty} e^{i \lambda\left(z-z^{3} / 3\right)} d z
$$

In this case, there are saddles through ± 1, and each contributes equally.
With $i\left(z-z^{3} / 3\right) \approx 2 / 3 i-i(z-i)^{2}, z \rightarrow 1$, we use approximate contour $z=1+s e^{-i \pi / 4}$, and the contribution near this saddle is

$$
e^{-i \pi / 4} \int_{-\infty}^{\infty} e^{\lambda\left(2 i / 3-s^{2}\right)} d s=e^{-i \pi / 4+2 \lambda i / 3} \sqrt{\pi / \lambda}
$$

The Airy function, cont.

For $x \rightarrow-\infty$ instead, use $k=|x|^{1 / 2} z$ so $\operatorname{Ai}(x)=|x|^{1 / 2} I\left(|x|^{3 / 2}\right) /(2 \pi)$ with

$$
I(\lambda)=\int_{-\infty}^{\infty} e^{i \lambda\left(z-z^{3} / 3\right)} d z
$$

In this case, there are saddles through ± 1, and each contributes equally.
With $i\left(z-z^{3} / 3\right) \approx 2 / 3 i-i(z-i)^{2}, z \rightarrow 1$, we use approximate contour $z=1+s e^{-i \pi / 4}$, and the contribution near this saddle is

$$
e^{-i \pi / 4} \int_{-\infty}^{\infty} e^{\lambda\left(2 i / 3-s^{2}\right)} d s=e^{-i \pi / 4+2 \lambda i / 3} \sqrt{\pi / \lambda}
$$

Similarly, $i\left(z-z^{3} / 3\right) \approx-2 / 3 i+i(z-i)^{2}, z \rightarrow-1$, and using the approximate contour $z=-1+s e^{i \pi / 4}$, the contribution near this saddle is

$$
e^{i \pi / 4} \int_{-\infty}^{\infty} e^{\lambda\left(-2 i / 3-s^{2}\right)} d s=e^{i \pi / 4-2 \lambda i / 3} \sqrt{\pi / \lambda}
$$

Adding both contributions, one finally gets

$$
\operatorname{Ai}(x) \sim \frac{1}{\sqrt{\pi} x^{1 / 4}} \cos \left(2 x^{3 / 2} / 3-\pi / 4\right)
$$

Dealing with endpoints

Even if contour is deformed through saddle point, the size of the endpoint contribution must be checked. Consider

$$
\int_{-1}^{1} e^{-4 x t^{2}} \cos \left(5 x t-x t^{3}\right) d t=e^{-2 x} \operatorname{Re} \int_{-1}^{1} e^{x \rho(t)} d t, \quad \rho(t)=-(t-i)^{2}-i(t-i)^{3}
$$

Dealing with endpoints

Even if contour is deformed through saddle point, the size of the endpoint contribution must be checked. Consider

$$
\int_{-1}^{1} e^{-4 x t^{2}} \cos \left(5 x t-x t^{3}\right) d t=e^{-2 x} \operatorname{Re} \int_{-1}^{1} e^{x \rho(t)} d t, \quad \rho(t)=-(t-i)^{2}-i(t-i)^{3}
$$

There is clearly a saddle at $t=i$, but how to deform contour?

Dealing with endpoints

Even if contour is deformed through saddle point, the size of the endpoint contribution must be checked. Consider

$$
\int_{-1}^{1} e^{-4 x t^{2}} \cos \left(5 x t-x t^{3}\right) d t=e^{-2 x} \operatorname{Re} \int_{-1}^{1} e^{x \rho(t)} d t, \quad \rho(t)=-(t-i)^{2}-i(t-i)^{3} .
$$

There is clearly a saddle at $t=i$, but how to deform contour?

Check: $\operatorname{Re} \rho(\pm 1)=-2$, whereas $\operatorname{Re} \rho(i)=0$. Thus saddle contributes exponentially more than endpoints.

Using approximate contour $t=i+s, \rho(t) \sim-s^{2}$ as $t \rightarrow i$, and integral approximates

$$
e^{-2 x} \int_{-\infty}^{\infty} e^{-x s^{2}} d s=e^{-2 x} \sqrt{\pi / x}
$$

Asymptotics of binomial coefficients

Consider

$$
\binom{N}{M}=\frac{1}{2 \pi i} \int_{C} \frac{(1+z)^{N}}{z^{M+1}} d z
$$

where C is a contour around the origin.

Asymptotics of binomial coefficients

Consider

$$
\binom{N}{M}=\frac{1}{2 \pi i} \int_{C} \frac{(1+z)^{N}}{z^{M+1}} d z,
$$

where C is a contour around the origin. Want limit where $M / N=\mu<1$ as $N \rightarrow \infty$; write integral as $\frac{1}{2 \pi i} \int_{C} \frac{1}{z} \exp (N \rho(z)) d z, \quad \rho(z) \equiv \ln (1+z)-\mu \ln z$.

Asymptotics of binomial coefficients

Consider

$$
\binom{N}{M}=\frac{1}{2 \pi i} \int_{C} \frac{(1+z)^{N}}{z^{M+1}} d z
$$

where C is a contour around the origin. Want limit where $M / N=\mu<1$ as $N \rightarrow \infty$; write integral as $\frac{1}{2 \pi i} \int_{C} \frac{1}{z} \exp (N \rho(z)) d z, \quad \rho(z) \equiv \ln (1+z)-\mu \ln z$.

Higher order saddles

When $\rho^{\prime \prime}=0$ at saddle, must investigate how saddle should be approached.

Higher order saddles

When $\rho^{\prime \prime}=0$ at saddle, must investigate how saddle should be approached. Consider

$$
\int_{-\infty}^{\infty} e^{x\left[\cosh (t-i \pi)-(t-i \pi)^{2} / 2\right]} d t
$$

Near saddle at $t=i \pi, \rho(t) \approx 1+(t-i \pi)^{4} / 4!$.

Contour to left of saddle uses approximate parameterization $t=i \pi+s e^{i \pi / 4},-\infty<s<0$, whereas to the right it is $t=i \pi+s e^{-i \pi / 4}, 0<s<\infty$. Resulting approximation is

$$
\int_{0}^{\infty} e^{-i \pi / 4} e^{x\left(1-r^{4} / 24\right)} d r+c . c .=\frac{1}{2} e^{x}(6 / x)^{1 / 4} \gamma(1 / 4) .
$$

Front propagation in Fisher's equation

Consider

$$
u_{t}=u_{x x}+u(1-u), \quad u(-\infty, t)=1, \quad u(+\infty, t)=0
$$

Front propagation in Fisher's equation

Consider

$$
u_{t}=u_{x x}+u(1-u), \quad u(-\infty, t)=1, \quad u(+\infty, t)=0
$$

Looking for traveling wave $u=g(x-c t)$ produces ODE

$$
g^{\prime \prime}+c g^{\prime}+g(1-g)=0, \quad g(-\infty)=1, \quad g(\infty)=0
$$

Phase plane reveals that any $c>0$ gives a solution, EXCEPT that if $c<\sqrt{2}$, then front is not monotone. What happens if initial condition is positive and decays rapidly as $x \rightarrow \infty$?

Front propagation in Fisher's equation,cont.

Hypothesis: front is "pulled along" by behavior in tail where $u \rightarrow 0$, which satisfies the linear equation

$$
u_{t}=u_{x x}+u, \quad u(x, 0)=f(x)
$$

Front propagation in Fisher's equation,cont.

Hypothesis: front is "pulled along" by behavior in tail where $u \rightarrow 0$, which satisfies the linear equation

$$
u_{t}=u_{x x}+u, \quad u(x, 0)=f(x)
$$

The Fourier solution is

$$
u(x, t)=\int_{-\infty}^{\infty} e^{i k x} e^{\left(1-k^{2}\right) t} \hat{f}(k) d k
$$

so that running along side the wave at speed c gives

$$
u(c t, t)=\int_{-\infty}^{\infty} e^{\left(1-k^{2}+i c k\right) t} \hat{f}(k) d k
$$

Front propagation in Fisher's equation,cont.

Hypothesis: front is "pulled along" by behavior in tail where $u \rightarrow 0$, which satisfies the linear equation

$$
u_{t}=u_{x x}+u, \quad u(x, 0)=f(x)
$$

The Fourier solution is

$$
u(x, t)=\int_{-\infty}^{\infty} e^{i k x} e^{\left(1-k^{2}\right) t} \hat{f}(k) d k
$$

so that running along side the wave at speed c gives

$$
u(c t, t)=\int_{-\infty}^{\infty} e^{\left(1-k^{2}+i c k\right) t} \hat{f}(k) d k
$$

For $t \rightarrow \infty$, this is a steepest descents problem with saddle at $k^{*}=-i c / 2$, and the resulting approximation to the integral is

$$
u(c t, t) \sim e^{t\left(1-c^{2} / 2\right)} \int_{-\infty}^{\infty} e^{-\left(k-k^{*}\right)^{2} t} \hat{f}\left(k^{*}\right) d k
$$

Front propagation in Fisher's equation,cont.

Hypothesis: front is "pulled along" by behavior in tail where $u \rightarrow 0$, which satisfies the linear equation

$$
u_{t}=u_{x x}+u, \quad u(x, 0)=f(x)
$$

The Fourier solution is

$$
u(x, t)=\int_{-\infty}^{\infty} e^{i k x} e^{\left(1-k^{2}\right) t} \hat{f}(k) d k
$$

so that running along side the wave at speed c gives

$$
u(c t, t)=\int_{-\infty}^{\infty} e^{\left(1-k^{2}+i c k\right) t} \hat{f}(k) d k
$$

For $t \rightarrow \infty$, this is a steepest descents problem with saddle at $k^{*}=-i c / 2$, and the resulting approximation to the integral is

$$
u(c t, t) \sim e^{t\left(1-c^{2} / 2\right)} \int_{-\infty}^{\infty} e^{-\left(k-k^{*}\right)^{2} t} \hat{f}\left(k^{*}\right) d k
$$

"Marginal stability" property: choose c so that waves amplitude does not grow or shrink, so that $1-c^{2} / 2=0$ or $c=\sqrt{2}$.

