Asymptotic Methods

The method of steepest descent
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Steepest descent integrals

Main observation: oscillatory integrals can often be turned into exponentially
decaying ones by deforming the complex contour, e.g.
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/ X dx = e/ / e du, x=e"u.
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To make this work in practice for integrals of the form
/ fF(t)e"Wdt,
c

need to find contours for which |e”(t)| increases (or decreases) the fastest; these
are steepest descent contours.

m Note that [e”(¥)] = eRe (P(1) We therefore want contours orthogonal to
the level sets of Re (p(t)); by the Cauchy-Riemann equations, these are
generally the level sets of Im (p(t)).

m Usually, |ep(t)| will be largest on certain points on the steepest descent
contour, and will decay exponentially away from these points. In other
words, we have transformed the problem into a Laplace integral.

m The Laplace points are generally where p/(t) = 0; these are saddle points.
Often, simply identifying the saddle points (instead of the whole contour)
is sufficient.
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Consider
% xcosht
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Only the leading order term can be computed with stationary phase. Writing
icosht = —sinhusinv 4+ icoshucosv, t=u+iv,

the steepest descent contours are level sets of cosh ucos v; symmetry suggests
a contour through the origin cosh ucosv = 1 is the correct choice.

One way to parameterize this curve is to use the real part ¢ = sinhusinv as
the parameter. With this choice, the deformed integral can be written
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where the principal square root is assumed. A binomial expansion of the
denominator produces
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Consider .
I(x) = / Inte™dt, x — oo
0

which is not of stationary phase type. The steepest descent curves are where
Re t is a constant. Deform contour to a union of three straight line contours:

5

branch cut



Example, cont.

Taking G, to infinity, we are left with

/—1/ In(is)e *ds = Ilnx_,7+7r/2
G

/ —// n(1+ is)e™e ds
3

= (fi)e"x/ (is+s°/2—is’/3+...)e “ds
0

= —ie™(i/x* +1/x° +..))

and
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For integrals
| = / F(£)e"Ddt, x — oo,
c

suppose that C can be deformed through a saddle where p’(t,) = 0 and
p"(to) # 0, so that Re p(ty) is a maximum along the contour.



Use of approximate contours near a saddle point

For integrals
| = / F(£)e"Ddt, x — oo,
c

suppose that C can be deformed through a saddle where p’(t,) = 0 and
p"(to) # 0, so that Re p(ty) is a maximum along the contour.

The leading order approximation is entirely dictated by the integrand near the
saddle, and therefore it suffices to write

[~ / Fto)e PO (=) /2y oy o
C

Therefore we do not need to know the steepest descent contour exactly. For
this approximation, the contour is a line that can be parameterized

t =ty + se’?, where 6 is chosen so that the exponential will decay and not
oscillate, i.e.

arg(p”(to)e™) =m, 0= (m—arg(p”(t0))/2.
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Consider

I(x) = / e cos(xt)f(t)dt = Re / e ECD(1)dt,  x — oo,
The saddle is where d/dt(t* — it) = 0 or to = i/2, and d?/dt*(t* — it) = —2.
The steepest descent contour is then approximately parameterized by
t =1i/2 + se' where § = 0, leading to

I(x) ~ Re / e WA E(i/2)dt = Re f(i/z)e-xf“\/z
oo X



The Airy function

The Airy differential equation is
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The Airy function

The Airy differential equation is

/

y' —xy =0, —o0<x< o0

Its decaying solution by Fourier transform is
1 [ i3
y() = Ai(x) = 5 / e g

To put this into a form suitable for steepest descents if x > 0, let k = x*/?z so
that Ai(x) = xl/zl(x3/2)/(27r) with

I(\) = / T e g

The saddle points are where d/dz(z + 2z%/3) = 0 or z = 4i. Which one to use?



The Airy function, cont.

Choosing the contour in the upper half plane through z = i, one uses the
approximate contour z = i +s. With i(z+2°/3) = —2/3 — (z —i)?, z = i, we
get
[ ~ 7A(72/3+52d _am2N/3 [T
/_oo e s=e R
so that

. 1 72x3/2/3
Al(X) ~ We .



The Airy function, cont.

For x — —oo instead, use k = |x|'/2z so Ai(x) = |x|"/21(|x[*/?)/(27) with
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The Airy function, cont.

For x — —oo instead, use k = |x|'/2z so Ai(x) = |x|*/2I(|x|>/?)/(2x) with
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In this case, there are saddles through +1, and
each contributes equally.

With i(z — 2°/3) = 2/3i —i(z — i), z = 1, we
use approximate contour z = 1 + se~™/#, and
the contribution near this saddle is
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The Airy function, cont.

For x — —oo instead, use k = |x|'/2z so Ai(x) = |x|*/2I(|x|>/?)/(2x) with

1) = / e gy
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In this case, there are saddles through +1, and
each contributes equally.

With i(z — 2°/3) = 2/3i —i(z — i), z = 1, we
use approximate contour z = 1 + se~™/#, and
the contribution near this saddle is

i/t /°° A2I/3-) yo _ g im/42NI/3 JAI

Similarly, i(z — 23/3)@ —2/3i 4 i(z —i)?, z — —1, and using the approximate
contour z = —1 + se'™*, the contribution near this saddle is

i/t /°° A20/3-9) yo /N3 [T
Adding both contributions, one finally gets
g y g

Ai(x) ~ cos(2x*/?/3 — 1r/4).

1
ﬁxl/4



Dealing with endpoints

Even if contour is deformed through saddle point, the size of the endpoint

contribution must be checked. Consider
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Dealing with endpoints

Even if contour is deformed through saddle point, the size of the endpoint
contribution must be checked. Consider
1 ) 1
/ e cos(5xt—xt’)dt = e *Re / ePOdt,  p(t) = —(t—i)2—i(t—i)>.
—1 —1
There is clearly a saddle at t = i, but how to deform contour?

Check: Re p(+1) = —2, whereas Re p(i) = 0.
Thus saddle contributes exponentially more
than endpoints.

Using approximate contour t = i + s, p(t) ~ —s° as t — i, and integral
approximates

PO 2 2
e X/ e ds=e \/m/x.
— 00



Asymptotics of binomial coefficients

Consider

(M) -2 [

M) omi [o zZM+1

where C is a contour around the origin.



Asymptotics of binomial coefficients

Consider N
N = i 7(1 + Z) dz,
M 2wi Jo  zMH1

where C is a contour around the origin. Want limit where M/N =y < 1 as
N — oo; write integral as 5= [ 2 exp(Np(z))dz, p(z) =In(1+z)— plnz.

There is a saddle point at zp = p1/(1 — i) > 0, and

p(20) = —pIn pu— (1= p) In(1—p), p"(20) = (1—p)* /.



Asymptotics of binomial coefficients

Consider

(M) [ e

M 2wi Jo  zMH1

where C is a contour around the origin. Want limit where M/N =y < 1 as
N — oo; write integral as 5= [ 2 exp(Np(z))dz, p(z) =In(1+z)— plnz.

There is a saddle point at zp = p1/(1 — i) > 0, and

p(20) = —pIn pu— (1= p) In(1—p), p"(20) = (1—p)* /.

7/or 1 =1/2, SD contour is just unit circle.
Approximate contour is z = se'™? 4 7.

/

Integral approximates

1 °°1N()7N”()2'/2 vz
2 oNela0)=Np" (20)5% gim/2 go )} exp(Np(z0)).

27 J_ o 20 |:27TN/,L(1 —u



Higher order saddles

When p” = 0 at saddle, must investigate how saddle should be approached.



Higher order saddles

When p” = 0 at saddle, must investigate how saddle should be approached.

Consider -
/ leosh(t—im)—(t—im)2/2] 4y

Near saddle at t = i, p(t) = 14 (t — i7)*/4l.

Contour to left of saddle uses approximate parameterization
t = im +se'™/* —co < s < 0, whereas to the right it is
t=ir+se "™/* 0 < s < co. Resulting approximation is

/ e A2 g e = %ex(6/x)1/4'y(1/4).
0
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Front propagation in Fisher’s equation

Consider

U = U + u(l —u), u(—oo,t)=1, u(4oo,t)=0.
Looking for traveling wave u = g(x — ct) produces ODE

g'+cg' +eg(1-g)=0, g(-o0)=1, g()=0,

Phase plane reveals that any ¢ > 0 gives a solution, EXCEPT that if ¢ < /2,
then front is not monotone. What happens if initial condition is positive and
decays rapidly as x — o0?



Front propagation in Fisher’'s equation,cont.

Hypothesis: front is “pulled along” by behavior in tail where u — 0, which
satisfies the linear equation

Ur = U +u,  u(x,0) = f(x).
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Front propagation in Fisher’'s equation,cont.

Hypothesis: front is “pulled along” by behavior in tail where u — 0, which
satisfies the linear equation

Uy = U +u,  u(x,0) = f(x).
The Fourier solution is
oo 2y,
u(x,t) = / ™MK E (k) dk,
so that running along side the wave at speed c gives

u(ct, t) = / AR HIRIE () k.
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For t — o0, this is a steepest descents problem with saddle at k* = —ic/2, and
the resulting approximation to the integral is

u(ct, t) ~ et(l_czn)/ e R R (k™Y k.



Front propagation in Fisher’'s equation,cont.

Hypothesis: front is “pulled along” by behavior in tail where u — 0, which
satisfies the linear equation

Uy = U +u,  u(x,0) = f(x).
The Fourier solution is
oo 2y,
u(x,t) = / ™MK E (k) dk,
so that running along side the wave at speed c gives

u(ct, t) = / AR HIRIE () k.
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For t — o0, this is a steepest descents problem with saddle at k* = —ic/2, and
the resulting approximation to the integral is

u(ct, t) ~ et(l_cz/Q)/ e_(k_k*)2t?(k*)dk.

“Marginal stability” property: choose c so that waves amplitude does not grow
or shrink, so that 1 — c2/2 =0orc=+2.



