
Asymptotic Methods

The method of steepest descent



Steepest descent integrals

Main observation: oscillatory integrals can often be turned into exponentially
decaying ones by deforming the complex contour, e.g.∫ ∞

0

e ix
2

dx = e iπ/4
∫ ∞
0

e−u2du, x = e iπ/4u.

To make this work in practice for integrals of the form∫
C

f (t)exρ(t)dt,

need to find contours for which |eρ(t)| increases (or decreases) the fastest; these
are steepest descent contours.

Note that |eρ(t)| = eRe (ρ(t)). We therefore want contours orthogonal to
the level sets of Re (ρ(t)); by the Cauchy-Riemann equations, these are
generally the level sets of Im (ρ(t)).

Usually, |eρ(t)| will be largest on certain points on the steepest descent
contour, and will decay exponentially away from these points. In other
words, we have transformed the problem into a Laplace integral.

The Laplace points are generally where ρ′(t) = 0; these are saddle points.
Often, simply identifying the saddle points (instead of the whole contour)
is sufficient.
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Example

Consider ∫ ∞
−∞

e ix cosh tdt, x →∞

Only the leading order term can be computed with stationary phase.

Writing

i cosh t = − sinh u sin v + i cosh u cos v , t = u + iv ,

the steepest descent contours are level sets of cosh u cos v ; symmetry suggests
a contour through the origin cosh u cos v = 1 is the correct choice.

One way to parameterize this curve is to use the real part φ = sinh u sin v as
the parameter. With this choice, the deformed integral can be written

2

∫ ∞
0

e−φxe ix

i
√
φ(2i − φ)1/2

dφ,

where the principal square root is assumed. A binomial expansion of the
denominator produces

2√
2i
e ix
∫ ∞
0

e−φx
(

1√
φ
− i
√
φ

4
+ . . .

)
dφ

=
√

2e iπ/4e ix
(

Γ(1/2)x−1/2 − iΓ(3/2)

4
x−3/2 + . . .

)
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Example

Consider

I (x) =

∫ 1

0

ln t e ixtdt, x →∞

which is not of stationary phase type. The steepest descent curves are where
Re t is a constant. Deform contour to a union of three straight line contours:



Example, cont.

Taking C2 to infinity, we are left with∫
C1

= i

∫ ∞
0

ln(is)e−xsds =
−i ln x − iγ + π/2

x

and ∫
C3

= −i
∫ ∞
0

ln(1 + is)e ixe−xsds

= (−i)e ix
∫ ∞
0

(is + s2/2− is3/3 + . . .)e−xsds

= −ie ix(i/x2 + 1/x3 + . . .)



Use of approximate contours near a saddle point

For integrals

I =

∫
C

f (t)exρ(t)dt, x →∞,

suppose that C can be deformed through a saddle where ρ′(t0) = 0 and
ρ′′(t0) 6= 0, so that Re ρ(t0) is a maximum along the contour.

The leading order approximation is entirely dictated by the integrand near the
saddle, and therefore it suffices to write

I ∼
∫
C

f (t0)ex(ρ(t0)+ρ
′′(t0)(t−t0)/2dt, x →∞.

Therefore we do not need to know the steepest descent contour exactly. For
this approximation, the contour is a line that can be parameterized
t = t0 + se iθ, where θ is chosen so that the exponential will decay and not
oscillate, i.e.

arg(ρ′′(t0)e2iθ) = π, θ = (π − arg(ρ′′(t0))/2.
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Example

Consider

I (x) =

∫ ∞
−∞

e−xt2 cos(xt)f (t)dt = Re

∫ ∞
−∞

e−x(t2−it)f (t)dt, x →∞.

The saddle is where d/dt(t2 − it) = 0 or t0 = i/2, and d2/dt2(t2 − it) = −2.
The steepest descent contour is then approximately parameterized by
t = i/2 + se iθ where θ = 0, leading to

I (x) ∼ Re

∫ ∞
−∞

e−x(1/4+s2)f (i/2)dt = Re f (i/2)e−x/4

√
π

x
.
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The Airy function

The Airy differential equation is

y ′′ − xy = 0, −∞ < x <∞.

Its decaying solution by Fourier transform is

y(x) ≡ Ai(x) =
1

2π

∫ ∞
−∞

e−i(kx+k3/3)dk.

To put this into a form suitable for steepest descents if x > 0, let k = x1/2z so
that Ai(x) = x1/2I (x3/2)/(2π) with

I (λ) =

∫ ∞
−∞

e iλ(z+z3/3)dz .

The saddle points are where d/dz(z + z3/3) = 0 or z = ±i . Which one to use?
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The Airy function, cont.

Choosing the contour in the upper half plane through z = i , one uses the
approximate contour z = i + s. With i(z + z3/3) ≈ −2/3− (z − i)2, z → i , we
get

I ∼
∫ ∞
−∞

e−λ(−2/3+s2ds = e−2λ/3

√
π

2λ
,

so that

Ai(x) ∼ 1

2
√
πx1/4

e−2x3/2/3.



The Airy function, cont.

For x → −∞ instead, use k = |x |1/2z so Ai(x) = |x |1/2I (|x |3/2)/(2π) with

I (λ) =

∫ ∞
−∞

e iλ(z−z3/3)dz .

In this case, there are saddles through ±1, and
each contributes equally.
With i(z − z3/3) ≈ 2/3i − i(z − i)2, z → 1, we
use approximate contour z = 1 + se−iπ/4, and
the contribution near this saddle is

e−iπ/4

∫ ∞
−∞

eλ(2i/3−s2)ds = e−iπ/4+2λi/3
√
π/λ.

Similarly, i(z − z3/3) ≈ −2/3i + i(z − i)2, z → −1, and using the approximate
contour z = −1 + se iπ/4, the contribution near this saddle is

e iπ/4
∫ ∞
−∞

eλ(−2i/3−s2)ds = e iπ/4−2λi/3
√
π/λ.

Adding both contributions, one finally gets

Ai(x) ∼ 1√
πx1/4

cos(2x3/2/3− π/4).
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Dealing with endpoints

Even if contour is deformed through saddle point, the size of the endpoint
contribution must be checked. Consider∫ 1

−1

e−4xt2 cos(5xt−xt3)dt = e−2xRe

∫ 1

−1

exρ(t)dt, ρ(t) = −(t−i)2−i(t−i)3.

There is clearly a saddle at t = i , but how to deform contour?

Check: Re ρ(±1) = −2, whereas Re ρ(i) = 0.
Thus saddle contributes exponentially more
than endpoints.

Using approximate contour t = i + s, ρ(t) ∼ −s2 as t → i , and integral
approximates

e−2x

∫ ∞
−∞

e−xs2ds = e−2x
√
π/x .
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Asymptotics of binomial coefficients

Consider (
N
M

)
=

1

2πi

∫
C

(1 + z)N

zM+1
dz ,

where C is a contour around the origin.

Want limit where M/N = µ < 1 as
N →∞; write integral as 1

2πi

∫
C

1
z

exp(Nρ(z))dz , ρ(z) ≡ ln(1 + z)− µ ln z .

There is a saddle point at z0 = µ/(1− µ) > 0, and

ρ(z0) = −µ lnµ−(1−µ) ln(1−µ), ρ′′(z0) = (1−µ)3/µ.

For µ = 1/2, SD contour is just unit circle.
Approximate contour is z = se iπ/2 + z0.

Integral approximates

1

2πi

∫ ∞
−∞

1

z0
eNρ(z0)−Nρ′′(z0)s

2

e iπ/2ds =

[
1

2πNµ(1− µ)

]1/2
exp(Nρ(z0)).
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Higher order saddles

When ρ′′ = 0 at saddle, must investigate how saddle should be approached.

Consider ∫ ∞
−∞

ex[cosh(t−iπ)−(t−iπ)2/2]dt.

Near saddle at t = iπ, ρ(t) ≈ 1 + (t − iπ)4/4!.

Contour to left of saddle uses approximate parameterization
t = iπ + se iπ/4,−∞ < s < 0, whereas to the right it is
t = iπ + se−iπ/4, 0 < s <∞. Resulting approximation is∫ ∞

0

e−iπ/4ex(1−r4/24)dr + c.c. =
1

2
ex(6/x)1/4γ(1/4).
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Front propagation in Fisher’s equation

Consider

ut = uxx + u(1− u), u(−∞, t) = 1, u(+∞, t) = 0.

Looking for traveling wave u = g(x − ct) produces ODE

g ′′ + cg ′ + g(1− g) = 0, g(−∞) = 1, g(∞) = 0,

Phase plane reveals that any c > 0 gives a solution, EXCEPT that if c <
√

2,
then front is not monotone. What happens if initial condition is positive and
decays rapidly as x →∞?
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Front propagation in Fisher’s equation,cont.

Hypothesis: front is “pulled along” by behavior in tail where u → 0, which
satisfies the linear equation

ut = uxx + u, u(x , 0) = f (x).

The Fourier solution is

u(x , t) =

∫ ∞
−∞

e ikxe(1−k2)t f̂ (k)dk,

so that running along side the wave at speed c gives

u(ct, t) =

∫ ∞
−∞

e(1−k2+ick)t f̂ (k)dk.

For t →∞, this is a steepest descents problem with saddle at k∗ = −ic/2, and
the resulting approximation to the integral is

u(ct, t) ∼ et(1−c2/2)

∫ ∞
−∞

e−(k−k∗)2t f̂ (k∗)dk.

“Marginal stability” property: choose c so that waves amplitude does not grow
or shrink, so that 1− c2/2 = 0 or c =

√
2.



Front propagation in Fisher’s equation,cont.
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satisfies the linear equation

ut = uxx + u, u(x , 0) = f (x).

The Fourier solution is

u(x , t) =

∫ ∞
−∞

e ikxe(1−k2)t f̂ (k)dk,

so that running along side the wave at speed c gives

u(ct, t) =

∫ ∞
−∞

e(1−k2+ick)t f̂ (k)dk.

For t →∞, this is a steepest descents problem with saddle at k∗ = −ic/2, and
the resulting approximation to the integral is

u(ct, t) ∼ et(1−c2/2)

∫ ∞
−∞

e−(k−k∗)2t f̂ (k∗)dk.

“Marginal stability” property: choose c so that waves amplitude does not grow
or shrink, so that 1− c2/2 = 0 or c =

√
2.



Front propagation in Fisher’s equation,cont.

Hypothesis: front is “pulled along” by behavior in tail where u → 0, which
satisfies the linear equation

ut = uxx + u, u(x , 0) = f (x).

The Fourier solution is

u(x , t) =

∫ ∞
−∞

e ikxe(1−k2)t f̂ (k)dk,

so that running along side the wave at speed c gives

u(ct, t) =

∫ ∞
−∞

e(1−k2+ick)t f̂ (k)dk.

For t →∞, this is a steepest descents problem with saddle at k∗ = −ic/2, and
the resulting approximation to the integral is

u(ct, t) ∼ et(1−c2/2)

∫ ∞
−∞

e−(k−k∗)2t f̂ (k∗)dk.

“Marginal stability” property: choose c so that waves amplitude does not grow
or shrink, so that 1− c2/2 = 0 or c =

√
2.



Front propagation in Fisher’s equation,cont.

Hypothesis: front is “pulled along” by behavior in tail where u → 0, which
satisfies the linear equation

ut = uxx + u, u(x , 0) = f (x).

The Fourier solution is

u(x , t) =

∫ ∞
−∞

e ikxe(1−k2)t f̂ (k)dk,

so that running along side the wave at speed c gives

u(ct, t) =

∫ ∞
−∞

e(1−k2+ick)t f̂ (k)dk.

For t →∞, this is a steepest descents problem with saddle at k∗ = −ic/2, and
the resulting approximation to the integral is

u(ct, t) ∼ et(1−c2/2)

∫ ∞
−∞

e−(k−k∗)2t f̂ (k∗)dk.

“Marginal stability” property: choose c so that waves amplitude does not grow
or shrink, so that 1− c2/2 = 0 or c =

√
2.


