Asymptotic Methods

The method of steepest descent
Main observation: oscillatory integrals can often be turned into exponentially decaying ones by deforming the complex contour, e.g.

$$\int_0^\infty e^{ix^2} dx = e^{i\pi/4} \int_0^\infty e^{-u^2} du, \quad x = e^{i\pi/4} u.$$
Main observation: oscillatory integrals can often be turned into exponentially decaying ones by deforming the complex contour, e.g.

\[\int_0^\infty e^{ix^2} \, dx = e^{i\pi/4} \int_0^\infty e^{-u^2} \, du, \quad x = e^{i\pi/4} u. \]

To make this work in practice for integrals of the form

\[\int_C f(t)e^{x\rho(t)} \, dt, \]

need to find contours for which \(|e^{\rho(t)}|\) increases (or decreases) the fastest; these are steepest descent contours.
Main observation: oscillatory integrals can often be turned into exponentially decaying ones by deforming the complex contour, e.g.

$$\int_0^\infty e^{ix^2} dx = e^{i\pi/4} \int_0^\infty e^{-u^2} du, \quad x = e^{i\pi/4} u.$$

To make this work in practice for integrals of the form

$$\int_C f(t) e^{x\rho(t)} dt,$$

need to find contours for which $|e^{\rho(t)}|$ increases (or decreases) the fastest; these are steepest descent contours.

- Note that $|e^{\rho(t)}| = e^{\text{Re} (\rho(t))}$. We therefore want contours orthogonal to the level sets of $\text{Re} (\rho(t))$; by the Cauchy-Riemann equations, these are generally the level sets of $\text{Im} (\rho(t))$.

Steepest descent integrals

Main observation: oscillatory integrals can often be turned into exponentially decaying ones by deforming the complex contour, e.g.

$$\int_0^\infty e^{ix^2} \, dx = e^{i\pi/4} \int_0^\infty e^{-u^2} \, du, \quad x = e^{i\pi/4} u.$$

To make this work in practice for integrals of the form

$$\int_C f(t)e^{x\rho(t)} \, dt,$$

need to find contours for which $|e^{\rho(t)}|$ increases (or decreases) the fastest; these are steepest descent contours.

- Note that $|e^{\rho(t)}| = e^{\text{Re} (\rho(t))}$. We therefore want contours orthogonal to the level sets of $\text{Re} (\rho(t))$; by the Cauchy-Riemann equations, these are generally the level sets of $\text{Im} (\rho(t))$.

- Usually, $|e^{\rho(t)}|$ will be largest on certain points on the steepest descent contour, and will decay exponentially away from these points. In other words, we have transformed the problem into a Laplace integral.
Main observation: oscillatory integrals can often be turned into exponentially decaying ones by deforming the complex contour, e.g.

\[\int_0^\infty e^{ix^2} \, dx = e^{i\pi/4} \int_0^\infty e^{-u^2} \, du, \quad x = e^{i\pi/4} u. \]

To make this work in practice for integrals of the form

\[\int_C f(t) e^{x\rho(t)} \, dt, \]

need to find contours for which \(|e^{\rho(t)}| \) increases (or decreases) the fastest; these are steepest descent contours.

- Note that \(|e^{\rho(t)}| = e^{\text{Re} \, (\rho(t))} \). We therefore want contours orthogonal to the level sets of \(\text{Re} \, (\rho(t)) \); by the Cauchy-Riemann equations, these are generally the level sets of \(\text{Im} \, (\rho(t)) \).

- Usually, \(|e^{\rho(t)}| \) will be largest on certain points on the steepest descent contour, and will decay exponentially away from these points. In other words, we have transformed the problem into a Laplace integral.

- The Laplace points are generally where \(\rho'(t) = 0 \); these are saddle points. Often, simply identifying the saddle points (instead of the whole contour) is sufficient.
Consider
\[\int_{-\infty}^{\infty} e^{ix \cosh t} dt, \quad x \to \infty \]

Only the leading order term can be computed with stationary phase.
Example

Consider

\[\int_{-\infty}^{\infty} e^{ix \cosh t} \, dt, \quad x \to \infty \]

Only the leading order term can be computed with stationary phase. Writing

\[i \cosh t = -\sinh u \sin \nu + i \cosh u \cos \nu, \quad t = u + iv, \]

the steepest descent contours are level sets of \(\cosh u \cos \nu \); symmetry suggests a contour through the origin \(\cosh u \cos \nu = 1 \) is the correct choice.
Example

Consider

$$\int_{-\infty}^{\infty} e^{ix \cosh t} dt, \quad x \to \infty$$

Only the leading order term can be computed with stationary phase. Writing

$$i \cosh t = -\sinh u \sin v + i \cosh u \cos v, \quad t = u + iv,$$

the steepest descent contours are level sets of $\cosh u \cos v$; symmetry suggests a contour through the origin $\cosh u \cos v = 1$ is the correct choice.

One way to parameterize this curve is to use the real part $\phi = \sinh u \sin v$ as the parameter. With this choice, the deformed integral can be written

$$2 \int_{0}^{\infty} \frac{e^{-\phi x} e^{ix}}{i \sqrt{\phi} (2i - \phi)^{1/2}} d\phi,$$

where the principal square root is assumed. A binomial expansion of the denominator produces

$$\frac{2}{\sqrt{2i}} e^{ix} \int_{0}^{\infty} e^{-\phi x} \left(\frac{1}{\sqrt{\phi}} - \frac{i \sqrt{\phi}}{4} + \ldots \right) d\phi$$

$$= \sqrt{2} e^{i\pi/4} e^{ix} \left(\Gamma(1/2)x^{-1/2} - \frac{i \Gamma(3/2)}{4} x^{-3/2} + \ldots \right)$$
Consider

\[I(x) = \int_0^1 \ln t \ e^{ixt} \ dt, \ x \to \infty \]

which is not of stationary phase type. The steepest descent curves are where \(\text{Re } t \) is a constant. Deform contour to a union of three straight line contours:
Taking C_2 to infinity, we are left with

$$
\int_{C_1} = i \int_0^\infty \ln(is) e^{-xs} \, ds = \frac{-i \ln x - i\gamma + \pi/2}{x}
$$

and

$$
\int_{C_3} = -i \int_0^\infty \ln(1 + is) e^{ix} e^{-xs} \, ds
$$

$$
= (-i) e^{ix} \int_0^\infty (is + s^2/2 - is^3/3 + \ldots) e^{-xs} \, ds
$$

$$
= -ie^{ix} (i/x^2 + 1/x^3 + \ldots)
$$
For integrals

\[I = \int_C f(t)e^{x\rho(t)} dt, \quad x \to \infty, \]

suppose that \(C \) can be deformed through a saddle where \(\rho'(t_0) = 0 \) and \(\rho''(t_0) \neq 0 \), so that \(\text{Re} \rho(t_0) \) is a maximum along the contour.
For integrals
\[I = \int_C f(t) e^{x\rho(t)} dt, \quad x \to \infty, \]
suppose that \(C \) can be deformed through a saddle where \(\rho'(t_0) = 0 \) and \(\rho''(t_0) \neq 0 \), so that Re \(\rho(t_0) \) is a maximum along the contour.

The leading order approximation is entirely dictated by the integrand near the saddle, and therefore it suffices to write
\[I \sim \int_C f(t_0) e^{x(\rho(t_0) + \rho''(t_0)(t-t_0)/2)} dt, \quad x \to \infty. \]

Therefore we do not need to know the steepest descent contour exactly. For this approximation, the contour is a line that can be parameterized \(t = t_0 + se^{i\theta} \), where \(\theta \) is chosen so that the exponential will decay and not oscillate, i.e.
\[\arg(\rho''(t_0)e^{2i\theta}) = \pi, \quad \theta = (\pi - \arg(\rho''(t_0))/2. \]
Consider

\[I(x) = \int_{-\infty}^{\infty} e^{-xt^2} \cos(xt) f(t) \, dt = \text{Re} \int_{-\infty}^{\infty} e^{-x(t^2-it)} f(t) \, dt, \quad x \to \infty. \]
Consider

\[I(x) = \int_{-\infty}^{\infty} e^{-x t^2} \cos(x t) f(t) dt = \text{Re} \int_{-\infty}^{\infty} e^{-x(t^2 - it)} f(t) dt, \quad x \to \infty. \]

The saddle is where \(\frac{d}{dt}(t^2 - it) = 0 \) or \(t_0 = i/2 \), and \(\frac{d^2}{dt^2}(t^2 - it) = -2 \). The steepest descent contour is then approximately parameterized by \(t = i/2 + se^{i\theta} \) where \(\theta = 0 \), leading to

\[I(x) \sim \text{Re} \int_{-\infty}^{\infty} e^{-x(1/4 + s^2)} f(i/2) dt = \text{Re} f(i/2) e^{-x/4} \sqrt{\frac{\pi}{x}}. \]
The Airy function

The Airy differential equation is

\[y'' - xy = 0, \quad -\infty < x < \infty. \]

Its decaying solution by Fourier transform is

\[y(x) \equiv \text{Ai}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i(kx+k^3/3)} dk. \]
The Airy differential equation is

\[y'' - xy = 0, \quad -\infty < x < \infty. \]

Its decaying solution by Fourier transform is

\[y(x) \equiv \text{Ai}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i(kx+k^3/3)} \, dk. \]

To put this into a form suitable for steepest descents if \(x > 0 \), let \(k = x^{1/2} z \) so that \(\text{Ai}(x) = x^{1/2} I(x^{3/2})/(2\pi) \) with

\[I(\lambda) = \int_{-\infty}^{\infty} e^{i\lambda(z+z^3/3)} \, dz. \]
The Airy function

The Airy differential equation is

\[y'' - xy = 0, \quad -\infty < x < \infty. \]

Its decaying solution by Fourier transform is

\[y(x) \equiv \text{Ai}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i(kx + k^3/3)} \, dk. \]

To put this into a form suitable for steepest descents if \(x > 0 \), let \(k = x^{1/2} z \) so that \(\text{Ai}(x) = x^{1/2} I(x^{3/2})/(2\pi) \) with

\[I(\lambda) = \int_{-\infty}^{\infty} e^{i\lambda(z + z^3/3)} \, dz. \]

The saddle points are where \(d/dz(z + z^3/3) = 0 \) or \(z = \pm i \). Which one to use?
Choosing the contour in the upper half plane through \(z = i \), one uses the approximate contour \(z = i + s \). With \(i(z + z^3/3) \approx -2/3 - (z - i)^2 \), \(z \to i \), we get

\[
I \sim \int_{-\infty}^{\infty} e^{-\lambda(-2/3+s^2)} ds = e^{-2\lambda/3} \sqrt{\frac{\pi}{2\lambda}},
\]

so that

\[
\text{Ai}(x) \sim \frac{1}{2\sqrt{\pi} x^{1/4}} e^{-2x^{3/2}/3}.
\]
For $x \to -\infty$ instead, use $k = |x|^{1/2}$ so $\text{Ai}(x) = |x|^{1/2} I(|x|^{3/2})/(2\pi)$ with

$$I(\lambda) = \int_{-\infty}^{\infty} e^{i\lambda z - z^3/3} dz.$$
For \(x \to -\infty \) instead, use \(k = |x|^{1/2} \) so \(\text{Ai}(x) = |x|^{1/2} I(|x|^{3/2})/(2\pi) \) with
\[
I(\lambda) = \int_{-\infty}^{\infty} e^{i\lambda(z-z^3/3)} \, dz.
\]

In this case, there are saddles through \(\pm 1 \), and each contributes equally.
With \(i(z - z^3/3) \approx 2/3 i - i(z - i)^2 \), \(z \to 1 \), we use approximate contour \(z = 1 + se^{-i\pi/4} \), and the contribution near this saddle is
\[
e^{-i\pi/4} \int_{-\infty}^{\infty} e^{\lambda(2i/3-s^2)} \, ds = e^{-i\pi/4 + 2\lambda i/3} \sqrt{\pi/\lambda}.
\]
For \(x \to -\infty\) instead, use \(k = |x|^{1/2} z\) so \(\text{Ai}(x) = |x|^{1/2} I(|x|^{3/2})/(2\pi)\) with

\[
I(\lambda) = \int_{-\infty}^{\infty} e^{i\lambda(z-z^3/3)} \, dz.
\]

In this case, there are saddles through \(\pm 1\), and each contributes equally. With \(i(z - z^3/3) \approx 2/3i - i(z - i)^2\), \(z \to 1\), we use approximate contour \(z = 1 + se^{-i\pi/4}\), and the contribution near this saddle is

\[
e^{-i\pi/4} \int_{-\infty}^{\infty} e^{\lambda(2i/3-s^2)} \, ds = e^{-i\pi/4+2\lambda i/3} \sqrt{\pi/\lambda}.
\]

Similarly, \(i(z - z^3/3) \approx -2/3i + i(z - i)^2\), \(z \to -1\), and using the approximate contour \(z = -1 + se^{i\pi/4}\), the contribution near this saddle is

\[
e^{i\pi/4} \int_{-\infty}^{\infty} e^{\lambda(-2i/3-s^2)} \, ds = e^{i\pi/4-2\lambda i/3} \sqrt{\pi/\lambda}.
\]

Adding both contributions, one finally gets

\[
\text{Ai}(x) \sim \frac{1}{\sqrt{\pi x^{1/4}}} \cos\left(2x^{3/2}/3 - \pi/4\right).
\]
Dealing with endpoints

Even if contour is deformed through saddle point, the size of the endpoint contribution must be checked. Consider

\[
\int_{-1}^{1} e^{-4xt^2} \cos(5xt - xt^3) \, dt = e^{-2x} \Re \int_{-1}^{1} e^{x \rho(t)} \, dt, \quad \rho(t) = -(t-i)^2 - i(t-i)^3.
\]
Dealing with endpoints

Even if contour is deformed through saddle point, the size of the endpoint contribution must be checked. Consider

$$\int_{-1}^{1} e^{-4xt^2} \cos(5xt - xt^3) \, dt = e^{-2x} \Re \int_{-1}^{1} e^{x \rho(t)} \, dt, \quad \rho(t) = -(t-i)^2 - i(t-i)^3.$$

There is clearly a saddle at $t = i$, but how to deform contour?
Dealing with endpoints

Even if contour is deformed through saddle point, the size of the endpoint contribution must be checked. Consider

\[
\int_{-1}^{1} e^{-4xt^2} \cos(5xt - xt^3) \, dt = e^{-2x} \text{Re} \int_{-1}^{1} e^{x \rho(t)} \, dt, \quad \rho(t) = -(t - i)^2 - i(t - i)^3.
\]

There is clearly a saddle at \(t = i \), but how to deform contour?

Check: \(\text{Re} \rho(\pm 1) = -2 \), whereas \(\text{Re} \rho(i) = 0 \). Thus saddle contributes exponentially more than endpoints.

Using approximate contour \(t = i + s \), \(\rho(t) \sim -s^2 \) as \(t \to i \), and integral approximates

\[
e^{-2x} \int_{-\infty}^{\infty} e^{-xs^2} \, ds = e^{-2x} \sqrt{\pi/x}.
\]
Asymptotics of binomial coefficients

Consider

\[
\binom{N}{M} = \frac{1}{2\pi i} \int_C \frac{(1+z)^N}{z^{M+1}} \, dz,
\]

where \(C \) is a contour around the origin.
Asymptotics of binomial coefficients

Consider

\[\binom{N}{M} = \frac{1}{2\pi i} \int_C \frac{(1+z)^N}{z^{M+1}} \, dz, \]

where \(C \) is a contour around the origin. Want limit where \(M/N = \mu < 1 \) as \(N \to \infty \); write integral as \(\frac{1}{2\pi i} \int_C \frac{1}{z} \exp(N\rho(z)) \, dz \), \(\rho(z) \equiv \ln(1 + z) - \mu \ln z \).

There is a saddle point at \(z_0 = \mu/(1 - \mu) > 0 \), and

\[\rho(z_0) = -\mu \ln \mu - (1 - \mu) \ln(1 - \mu), \quad \rho''(z_0) = (1 - \mu)^3/\mu. \]
Asymptotics of binomial coefficients

Consider

\[
\binom{N}{M} = \frac{1}{2\pi i} \int_C \frac{(1+z)^N}{z^{M+1}} \, dz,
\]

where \(C \) is a contour around the origin. Want limit where \(M/N = \mu < 1 \) as \(N \to \infty \); write integral as \(\frac{1}{2\pi i} \int_C \frac{1}{z} \exp(N\rho(z)) \, dz \), \(\rho(z) \equiv \ln(1+z) - \mu \ln z \).

There is a saddle point at \(z_0 = \mu/(1-\mu) > 0 \), and

\[
\rho(z_0) = -\mu \ln \mu - (1-\mu) \ln(1-\mu), \quad \rho''(z_0) = (1-\mu)^3/\mu.
\]

For \(\mu = 1/2 \), SD contour is just unit circle. Approximate contour is \(z = se^{i\pi/2} + z_0 \).

Integral approximates

\[
\frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{1}{z_0} e^{N\rho(z_0) - N\rho''(z_0)s^2} e^{i\pi/2} \, ds = \left[\frac{1}{2\pi N\mu(1-\mu)} \right]^{1/2} \exp(N\rho(z_0)).
\]
Higher order saddles

When $\rho'' = 0$ at saddle, must investigate how saddle should be approached.
Higher order saddles

When $\rho'' = 0$ at saddle, must investigate how saddle should be approached. Consider

$$\int_{-\infty}^{\infty} e^{x[\cosh(t-i\pi)-(t-i\pi)^2/2]} dt.$$

Near saddle at $t = i\pi$, $\rho(t) \approx 1 + (t - i\pi)^4/4!$.

Contour to left of saddle uses approximate parameterization $t = i\pi + se^{i\pi/4}$, $-\infty < s < 0$, whereas to the right it is $t = i\pi + se^{-i\pi/4}$, $0 < s < \infty$. Resulting approximation is

$$\int_{0}^{\infty} e^{-i\pi/4} e^{x(1-r^4/24)} dr + c.c. = \frac{1}{2} e^{x(6/x)^{1/4}} \gamma(1/4).$$
Consider

\[u_t = u_{xx} + u(1 - u), \quad u(-\infty, t) = 1, \quad u(+\infty, t) = 0. \]
Consider

\[u_t = u_{xx} + u(1 - u), \quad u(-\infty, t) = 1, \quad u(+\infty, t) = 0. \]

Looking for traveling wave \(u = g(x - ct) \) produces ODE

\[g'' + cg' + g(1 - g) = 0, \quad g(-\infty) = 1, \quad g(\infty) = 0, \]

Phase plane reveals that any \(c > 0 \) gives a solution, EXCEPT that if \(c < \sqrt{2} \), then front is not monotone. What happens if initial condition is positive and decays rapidly as \(x \to \infty \)?
Hypothesis: front is “pulled along” by behavior in tail where $u \to 0$, which satisfies the linear equation

$$u_t = u_{xx} + u, \quad u(x, 0) = f(x).$$
Hypothesis: front is “pulled along” by behavior in tail where \(u \to 0 \), which satisfies the linear equation

\[
u_{t} = u_{xx} + u, \quad u(x,0) = f(x).
\]

The Fourier solution is

\[
u(x,t) = \int_{-\infty}^{\infty} e^{ikx} e^{(1-k^2)t} \hat{f}(k) dk,
\]

so that running along side the wave at speed \(c \) gives

\[
u(ct,t) = \int_{-\infty}^{\infty} e^{(1-k^2+ik^2)t} \hat{f}(k) dk.
\]
Hypothesis: front is “pulled along” by behavior in tail where $u \to 0$, which satisfies the linear equation

$$u_t = u_{xx} + u, \quad u(x, 0) = f(x).$$

The Fourier solution is

$$u(x, t) = \int_{-\infty}^{\infty} e^{ikx} e^{(1-k^2)t} \hat{f}(k) dk,$$

so that running along side the wave at speed c gives

$$u(ct, t) = \int_{-\infty}^{\infty} e^{(1-k^2+ick)t} \hat{f}(k) dk.$$

For $t \to \infty$, this is a steepest descents problem with saddle at $k^* = -ic/2$, and the resulting approximation to the integral is

$$u(ct, t) \sim e^{t(1-c^2/2)} \int_{-\infty}^{\infty} e^{-(k-k^*)^2} \hat{f}(k^*) dk.$$
Hypothesis: front is “pulled along” by behavior in tail where $u \to 0$, which satisfies the linear equation

$$u_t = u_{xx} + u, \quad u(x, 0) = f(x).$$

The Fourier solution is

$$u(x, t) = \int_{-\infty}^{\infty} e^{ikx} e^{(1-k^2)t} \hat{f}(k) dk,$$

so that running along side the wave at speed c gives

$$u(ct, t) = \int_{-\infty}^{\infty} e^{(1-k^2+ik)c} \hat{f}(k) dk.$$

For $t \to \infty$, this is a steepest descents problem with saddle at $k^* = -ic/2$, and the resulting approximation to the integral is

$$u(ct, t) \sim e^{t(1-c^2/2)} \int_{-\infty}^{\infty} e^{-(k-k^*)^2 t} \hat{f}(k^*) dk.$$

“Marginal stability” property: choose c so that waves amplitude does not grow or shrink, so that $1 - c^2/2 = 0$ or $c = \sqrt{2}$.