Asymptotic Methods

The method of steepest descent

Main observation: oscillatory integrals can often be turned into exponentially decaying ones by deforming the complex contour, e.g.

$$\int_0^\infty e^{ix^2} dx = e^{i\pi/4} \int_0^\infty e^{-u^2} du, \quad x = e^{i\pi/4} u.$$

Main observation: oscillatory integrals can often be turned into exponentially decaying ones by deforming the complex contour, e.g.

$$\int_0^\infty e^{ix^2} dx = e^{i\pi/4} \int_0^\infty e^{-u^2} du, \quad x = e^{i\pi/4} u.$$

To make this work in practice for integrals of the form

$$\int_C f(t) e^{\times \rho(t)} dt$$

need to find contours for which $|e^{\rho(t)}|$ increases (or decreases) the fastest; these are steepest descent contours.

Main observation: oscillatory integrals can often be turned into exponentially decaying ones by deforming the complex contour, e.g.

$$\int_0^\infty e^{ix^2} dx = e^{i\pi/4} \int_0^\infty e^{-u^2} du, \quad x = e^{i\pi/4} u.$$

To make this work in practice for integrals of the form

$$\int_C f(t) e^{\times \rho(t)} dt$$

need to find contours for which $|e^{\rho(t)}|$ increases (or decreases) the fastest; these are steepest descent contours.

Note that |e^{ρ(t)}| = e^{Re (ρ(t))}. We therefore want contours orthogonal to the level sets of Re (ρ(t)); by the Cauchy-Riemann equations, these are generally the level sets of Im (ρ(t)).

Main observation: oscillatory integrals can often be turned into exponentially decaying ones by deforming the complex contour, e.g.

$$\int_0^\infty e^{ix^2} dx = e^{i\pi/4} \int_0^\infty e^{-u^2} du, \quad x = e^{i\pi/4} u.$$

To make this work in practice for integrals of the form

$$\int_C f(t) e^{\times \rho(t)} dt$$

need to find contours for which $|e^{\rho(t)}|$ increases (or decreases) the fastest; these are steepest descent contours.

- Note that |e^{ρ(t)}| = e^{Re (ρ(t))}. We therefore want contours orthogonal to the level sets of Re (ρ(t)); by the Cauchy-Riemann equations, these are generally the level sets of Im (ρ(t)).
- Usually, |e^{ρ(t)}| will be largest on certain points on the steepest descent contour, and will decay exponentially away from these points. In other words, we have transformed the problem into a Laplace integral.

Main observation: oscillatory integrals can often be turned into exponentially decaying ones by deforming the complex contour, e.g.

$$\int_0^\infty e^{ix^2} dx = e^{i\pi/4} \int_0^\infty e^{-u^2} du, \quad x = e^{i\pi/4} u.$$

To make this work in practice for integrals of the form

$$\int_C f(t) e^{x \rho(t)} dt$$

need to find contours for which $|e^{\rho(t)}|$ increases (or decreases) the fastest; these are steepest descent contours.

- Note that |e^{ρ(t)}| = e^{Re (ρ(t))}. We therefore want contours orthogonal to the level sets of Re (ρ(t)); by the Cauchy-Riemann equations, these are generally the level sets of Im (ρ(t)).
- Usually, |e^{ρ(t)}| will be largest on certain points on the steepest descent contour, and will decay exponentially away from these points. In other words, we have transformed the problem into a Laplace integral.
- The Laplace points are generally where ρ'(t) = 0; these are saddle points. Often, simply identifying the saddle points (instead of the whole contour) is sufficient.

Consider

$$\int_{-\infty}^{\infty} e^{ix \cosh t} dt, \quad x \to \infty$$

Only the leading order term can be computed with stationary phase.

Consider

$$\int_{-\infty}^{\infty} e^{ix\cosh t} dt, \quad x \to \infty$$

Only the leading order term can be computed with stationary phase. Writing

```
i \cosh t = -\sinh u \sin v + i \cosh u \cos v, \quad t = u + iv,
```

the steepest descent contours are level sets of $\cosh u \cos v$; symmetry suggests a contour through the origin $\cosh u \cos v = 1$ is the correct choice.

Consider

$$\int_{-\infty}^{\infty} e^{ix\cosh t} dt, \quad x \to \infty$$

Only the leading order term can be computed with stationary phase. Writing

$$i \cosh t = -\sinh u \sin v + i \cosh u \cos v, \quad t = u + iv$$

the steepest descent contours are level sets of $\cosh u \cos v$; symmetry suggests a contour through the origin $\cosh u \cos v = 1$ is the correct choice.

One way to parameterize this curve is to use the real part $\phi = \sinh u \sin v$ as the parameter. With this choice, the deformed integral can be written

$$2\int_0^\infty \frac{e^{-\phi x}e^{ix}}{i\sqrt{\phi}(2i-\phi)^{1/2}}d\phi,$$

where the principal square root is assumed. A binomial expansion of the denominator produces

$$\begin{aligned} &\frac{2}{\sqrt{2i}}e^{ix}\int_0^\infty e^{-\phi x}\left(\frac{1}{\sqrt{\phi}}-\frac{i\sqrt{\phi}}{4}+\ldots\right)d\phi\\ &=\sqrt{2}e^{i\pi/4}e^{ix}\left(\Gamma(1/2)x^{-1/2}-\frac{i\Gamma(3/2)}{4}x^{-3/2}+\ldots\right)\end{aligned}$$

Consider

$$I(x) = \int_0^1 \ln t \, e^{ixt} dt, x \to \infty$$

which is not of stationary phase type. The steepest descent curves are where Re t is a constant. Deform contour to a union of three straight line contours:

Taking C_2 to infinity, we are left with

$$\int_{C_1} = i \int_0^\infty \ln(is) e^{-xs} ds = \frac{-i \ln x - i\gamma + \pi/2}{x}$$

 and

$$\int_{C_3} = -i \int_0^\infty \ln(1+is) e^{ix} e^{-xs} ds$$

= $(-i) e^{ix} \int_0^\infty (is + s^2/2 - is^3/3 + ...) e^{-xs} ds$
= $-ie^{ix} (i/x^2 + 1/x^3 + ...)$

For integrals

$$I=\int_C f(t)e^{x\rho(t)}dt, \quad x\to\infty,$$

suppose that C can be deformed through a saddle where $\rho'(t_0) = 0$ and $\rho''(t_0) \neq 0$, so that Re $\rho(t_0)$ is a maximum along the contour.

For integrals

$$I = \int_C f(t) e^{x \rho(t)} dt, \quad x \to \infty,$$

suppose that C can be deformed through a saddle where $\rho'(t_0) = 0$ and $\rho''(t_0) \neq 0$, so that Re $\rho(t_0)$ is a maximum along the contour.

The leading order approximation is entirely dictated by the integrand near the saddle, and therefore it suffices to write

$$I\sim \int_C f(t_0)e^{x(\rho(t_0)+\rho''(t_0)(t-t_0)/2}dt, \quad x\to\infty.$$

Therefore we do not need to know the steepest descent contour exactly. For this approximation, the contour is a line that can be parameterized $t = t_0 + se^{i\theta}$, where θ is chosen so that the exponential will decay and not oscillate, i.e.

$${\sf arg}(
ho^{\prime\prime}(t_0){\sf e}^{2i heta})=\pi, \quad heta=(\pi-{\sf arg}(
ho^{\prime\prime}(t_0))/2.$$

Consider

$$I(x) = \int_{-\infty}^{\infty} e^{-xt^2} \cos(xt) f(t) dt = \operatorname{Re} \int_{-\infty}^{\infty} e^{-x(t^2 - it)} f(t) dt, \quad x \to \infty.$$

Consider

$$I(x) = \int_{-\infty}^{\infty} e^{-xt^2} \cos(xt) f(t) dt = \operatorname{Re} \int_{-\infty}^{\infty} e^{-x(t^2 - it)} f(t) dt, \quad x \to \infty.$$

The saddle is where $d/dt(t^2 - it) = 0$ or $t_0 = i/2$, and $d^2/dt^2(t^2 - it) = -2$. The steepest descent contour is then approximately parameterized by $t = i/2 + se^{i\theta}$ where $\theta = 0$, leading to

$$I(x) \sim \text{Re} \ \int_{-\infty}^{\infty} e^{-x(1/4+s^2)} f(i/2) dt = \text{Re} \ f(i/2) e^{-x/4} \sqrt{\frac{\pi}{x}}$$

The Airy differential equation is

$$y'' - xy = 0, \quad -\infty < x < \infty.$$

Its decaying solution by Fourier transform is

$$y(x) \equiv \operatorname{Ai}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i(kx+k^3/3)} dk.$$

The Airy differential equation is

$$y'' - xy = 0, \quad -\infty < x < \infty.$$

Its decaying solution by Fourier transform is

$$y(x) \equiv \operatorname{Ai}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i(kx+k^3/3)} dk.$$

To put this into a form suitable for steepest descents if x > 0, let $k = x^{1/2}z$ so that Ai $(x) = x^{1/2}I(x^{3/2})/(2\pi)$ with

$$I(\lambda) = \int_{-\infty}^{\infty} e^{i\lambda(z+z^3/3)} dz$$

The Airy differential equation is

$$y'' - xy = 0, \quad -\infty < x < \infty.$$

Its decaying solution by Fourier transform is

$$y(x) \equiv \operatorname{Ai}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i(kx+k^3/3)} dk.$$

To put this into a form suitable for steepest descents if x > 0, let $k = x^{1/2}z$ so that Ai $(x) = x^{1/2}I(x^{3/2})/(2\pi)$ with

$$I(\lambda) = \int_{-\infty}^{\infty} e^{i\lambda(z+z^3/3)} dz.$$

The saddle points are where $d/dz(z+z^3/3) = 0$ or $z = \pm i$. Which one to use?

Choosing the contour in the upper half plane through z = i, one uses the approximate contour z = i + s. With $i(z + z^3/3) \approx -2/3 - (z - i)^2$, $z \to i$, we get

$$I \sim \int_{-\infty}^{\infty} e^{-\lambda(-2/3+s^2)} ds = e^{-2\lambda/3} \sqrt{\frac{\pi}{2\lambda}},$$

so that

Ai(x) ~
$$\frac{1}{2\sqrt{\pi}x^{1/4}}e^{-2x^{3/2}/3}$$
.

For $x \to -\infty$ instead, use $k = |x|^{1/2} z$ so Ai $(x) = |x|^{1/2} I(|x|^{3/2})/(2\pi)$ with $I(\lambda) = \int_{-\infty}^{\infty} e^{i\lambda(z-z^3/3)} dz.$

For
$$x \to -\infty$$
 instead, use $k = |x|^{1/2}z$ so Ai $(x) = |x|^{1/2}I(|x|^{3/2})/(2\pi)$ with

$$I(\lambda) = \int_{-\infty}^{\infty} e^{i\lambda(z-z^{3}/3)}dz.$$

In this case, there are saddles through $\pm 1,$ and each contributes equally.

With $i(z - z^3/3) \approx 2/3i - i(z - i)^2$, $z \to 1$, we use approximate contour $z = 1 + se^{-i\pi/4}$, and the contribution near this saddle is

$$e^{-i\pi/4}\int_{-\infty}^{\infty}e^{\lambda(2i/3-s^2)}ds=e^{-i\pi/4+2\lambda i/3}\sqrt{\pi/\lambda}.$$

For
$$x \to -\infty$$
 instead, use $k = |x|^{1/2}z$ so Ai $(x) = |x|^{1/2}I(|x|^{3/2})/(2\pi)$ with

$$I(\lambda) = \int_{-\infty}^{\infty} e^{i\lambda(z-z^{3}/3)}dz.$$

In this case, there are saddles through $\pm 1,$ and each contributes equally.

With $i(z - z^3/3) \approx 2/3i - i(z - i)^2$, $z \to 1$, we use approximate contour $z = 1 + se^{-i\pi/4}$, and the contribution near this saddle is

$$e^{-i\pi/4}\int_{-\infty}^{\infty}e^{\lambda(2i/3-s^2)}ds=e^{-i\pi/4+2\lambda i/3}\sqrt{\pi/\lambda}.$$

Similarly, $i(z - z^3/3) \approx -2/3i + i(z - i)^2$, $z \to -1$, and using the approximate contour $z = -1 + se^{i\pi/4}$, the contribution near this saddle is

$$e^{i\pi/4}\int_{-\infty}^{\infty}e^{\lambda(-2i/3-s^2)}ds=e^{i\pi/4-2\lambda i/3}\sqrt{\pi/\lambda}.$$

Adding both contributions, one finally gets

$$\operatorname{Ai}(x) \sim rac{1}{\sqrt{\pi} x^{1/4}} \cos(2x^{3/2}/3 - \pi/4).$$

Dealing with endpoints

Even if contour is deformed through saddle point, the size of the endpoint contribution must be checked. Consider

$$\int_{-1}^{1} e^{-4xt^2} \cos(5xt - xt^3) dt = e^{-2x} \operatorname{Re} \int_{-1}^{1} e^{x\rho(t)} dt, \quad \rho(t) = -(t-i)^2 - i(t-i)^3.$$

Dealing with endpoints

Even if contour is deformed through saddle point, the size of the endpoint contribution must be checked. Consider

$$\int_{-1}^{1} e^{-4xt^{2}} \cos(5xt - xt^{3}) dt = e^{-2x} \operatorname{Re} \int_{-1}^{1} e^{x\rho(t)} dt, \quad \rho(t) = -(t - i)^{2} - i(t - i)^{3}.$$

There is clearly a saddle at t = i, but how to deform contour?

Dealing with endpoints

Even if contour is deformed through saddle point, the size of the endpoint contribution must be checked. Consider

$$\int_{-1}^{1} e^{-4xt^2} \cos(5xt - xt^3) dt = e^{-2x} \operatorname{Re} \int_{-1}^{1} e^{x\rho(t)} dt, \quad \rho(t) = -(t-i)^2 - i(t-i)^3.$$

There is clearly a saddle at t = i, but how to deform contour?

Check: Re $\rho(\pm 1) = -2$, whereas Re $\rho(i) = 0$. Thus saddle contributes exponentially more than endpoints.

Using approximate contour $t=i+s,\
ho(t)\sim -s^2$ as t
ightarrow i, and integral approximates

$$e^{-2x}\int_{-\infty}^{\infty}e^{-xs^2}ds=e^{-2x}\sqrt{\pi/x}.$$

Asymptotics of binomial coefficients

Consider

$$\binom{N}{M} = \frac{1}{2\pi i} \int_C \frac{(1+z)^N}{z^{M+1}} dz,$$

where C is a contour around the origin.

Asymptotics of binomial coefficients

Consider

$$\binom{N}{M} = \frac{1}{2\pi i} \int_C \frac{(1+z)^N}{z^{M+1}} dz,$$

where C is a contour around the origin. Want limit where $M/N = \mu < 1$ as $N \to \infty$; write integral as $\frac{1}{2\pi i} \int_C \frac{1}{z} \exp(N\rho(z)) dz$, $\rho(z) \equiv \ln(1+z) - \mu \ln z$.

Asymptotics of binomial coefficients

Consider

$$\binom{N}{M} = \frac{1}{2\pi i} \int_C \frac{(1+z)^N}{z^{M+1}} dz,$$

where C is a contour around the origin. Want limit where $M/N = \mu < 1$ as $N \to \infty$; write integral as $\frac{1}{2\pi i} \int_C \frac{1}{z} \exp(N\rho(z)) dz$, $\rho(z) \equiv \ln(1+z) - \mu \ln z$.

Integral approximates

$$\frac{1}{2\pi i}\int_{-\infty}^{\infty}\frac{1}{z_{0}}e^{N\rho(z_{0})-N\rho^{\prime\prime}(z_{0})s^{2}}e^{i\pi/2}ds=\left[\frac{1}{2\pi N\mu(1-\mu)}\right]^{1/2}exp(N\rho(z_{0})).$$

Higher order saddles

When $\rho'' = 0$ at saddle, must investigate how saddle should be approached.

When $\rho^{\prime\prime}=0$ at saddle, must investigate how saddle should be approached. Consider

$$\int_{-\infty}^{\infty} e^{x[\cosh(t-i\pi)-(t-i\pi)^2/2]} dt$$

Near saddle at
$$t = i\pi$$
, $\rho(t) \approx 1 + (t - i\pi)^4/4!$.

Contour to left of saddle uses approximate parameterization $t = i\pi + se^{i\pi/4}, -\infty < s < 0$, whereas to the right it is $t = i\pi + se^{-i\pi/4}, 0 < s < \infty$. Resulting approximation is

$$\int_0^\infty e^{-i\pi/4} e^{x(1-r^4/24)} dr + c.c. = \frac{1}{2} e^x (6/x)^{1/4} \gamma(1/4)$$

Consider

$$u_t = u_{xx} + u(1-u), \quad u(-\infty, t) = 1, \quad u(+\infty, t) = 0.$$

Consider

$$u_t = u_{xx} + u(1-u), \quad u(-\infty, t) = 1, \quad u(+\infty, t) = 0.$$

Looking for traveling wave u = g(x - ct) produces ODE

$$g^{\prime\prime}+cg^\prime+g(1-g)=0, \quad g(-\infty)=1, \quad g(\infty)=0,$$

Phase plane reveals that any c > 0 gives a solution, EXCEPT that if $c < \sqrt{2}$, then front is not monotone. What happens if initial condition is positive and decays rapidly as $x \to \infty$?

Hypothesis: front is "pulled along" by behavior in tail where $u \rightarrow 0$, which satisfies the linear equation

$$u_t = u_{xx} + u, \quad u(x,0) = f(x).$$

Hypothesis: front is "pulled along" by behavior in tail where $u \rightarrow 0$, which satisfies the linear equation

$$u_t = u_{xx} + u, \quad u(x,0) = f(x).$$

The Fourier solution is

$$u(x,t) = \int_{-\infty}^{\infty} e^{ikx} e^{(1-k^2)t} \hat{f}(k) dk,$$

so that running along side the wave at speed c gives

$$u(ct,t) = \int_{-\infty}^{\infty} e^{(1-k^2+ick)t} \hat{f}(k) dk.$$

Hypothesis: front is "pulled along" by behavior in tail where $u \rightarrow 0$, which satisfies the linear equation

$$u_t = u_{xx} + u, \quad u(x,0) = f(x).$$

The Fourier solution is

$$u(x,t) = \int_{-\infty}^{\infty} e^{ikx} e^{(1-k^2)t} \hat{f}(k) dk,$$

so that running along side the wave at speed c gives

$$u(ct,t) = \int_{-\infty}^{\infty} e^{(1-k^2+ick)t} \hat{f}(k) dk.$$

For $t \to \infty$, this is a steepest descents problem with saddle at $k^* = -ic/2$, and the resulting approximation to the integral is

$$u(ct,t) \sim e^{t(1-c^2/2)} \int_{-\infty}^{\infty} e^{-(k-k^*)^2 t} \hat{f}(k^*) dk.$$

Hypothesis: front is "pulled along" by behavior in tail where $u \rightarrow 0$, which satisfies the linear equation

$$u_t = u_{xx} + u, \quad u(x,0) = f(x).$$

The Fourier solution is

$$u(x,t) = \int_{-\infty}^{\infty} e^{ikx} e^{(1-k^2)t} \hat{f}(k) dk,$$

so that running along side the wave at speed c gives

$$u(ct,t) = \int_{-\infty}^{\infty} e^{(1-k^2+ick)t} \hat{f}(k) dk.$$

For $t \to \infty$, this is a steepest descents problem with saddle at $k^* = -ic/2$, and the resulting approximation to the integral is

$$u(ct,t) \sim e^{t(1-c^2/2)} \int_{-\infty}^{\infty} e^{-(k-k^*)^2 t} \hat{f}(k^*) dk.$$

"Marginal stability" property: choose c so that waves amplitude does not grow or shrink, so that $1 - c^2/2 = 0$ or $c = \sqrt{2}$.