Asymptotic Methods
WKB expansion

Failure of multiple scales with slowly varying coefficients

Consider

$$
y^{\prime \prime}+q(\epsilon x) y=0, \quad q>0
$$

Failure of multiple scales with slowly varying coefficients

Consider

$$
y^{\prime \prime}+q(\epsilon x) y=0, \quad q>0
$$

It seems reasonable to introduce slow scale $X=\epsilon x$, so that

$$
y_{x x}+2 \epsilon y_{x x}+\epsilon^{2} y x x+q(X) y=0
$$

Expand $y=y_{0}(x, X)+\epsilon y_{1}(x, X)+\ldots$, so that

$$
y_{0 x x}+q(X) y=0
$$

whose general solution is $y_{0}=a(X) \cos (\sqrt{q(X)} x)+b(X) \sin (\sqrt{q(X)} x)$.

Failure of multiple scales with slowly varying coefficients

Consider

$$
y^{\prime \prime}+q(\epsilon x) y=0, \quad q>0
$$

It seems reasonable to introduce slow scale $X=\epsilon x$, so that

$$
y_{x x}+2 \epsilon y_{x x}+\epsilon^{2} y x x+q(X) y=0
$$

Expand $y=y_{0}(x, X)+\epsilon y_{1}(x, X)+\ldots$, so that

$$
y_{0 x x}+q(X) y=0
$$

whose general solution is $y_{0}=a(X) \cos (\sqrt{q(X)} x)+b(X) \sin (\sqrt{q(X)} x)$.
The $\mathcal{O}(\epsilon)$ terms are

$$
\begin{aligned}
y_{1 x x}+y_{1}= & -2 y_{0 x x}=\left(2 a^{\prime} \sqrt{q}+a q^{\prime} / \sqrt{q}\right) \sin (\sqrt{q} x)+\frac{a q^{\prime 2}}{2 q} x \cos (\sqrt{q} x) \\
& -\left(2 b^{\prime} \sqrt{q}+b q^{\prime} / \sqrt{q}\right) \cos (\sqrt{q} x)-\frac{b q^{\prime 2}}{2 q} x \sin (\sqrt{q} x)
\end{aligned}
$$

While it is possible to eliminate secular terms with $\cos (\sqrt{q} x)$ and $\sin (\sqrt{q} x)$, still left with terms which produce secular growth unless $a, b=0$.

A better choice of fast scale

Consider instead same problem written in terms of slow variable to begin with

$$
\epsilon^{2} y^{\prime \prime}-q(x) y=0
$$

If q is constant, solution is $y=a e^{-x \sqrt{q} / \epsilon}+b e^{x \sqrt{q} / \epsilon}$.

A better choice of fast scale

Consider instead same problem written in terms of slow variable to begin with

$$
\epsilon^{2} y^{\prime \prime}-q(x) y=0
$$

If q is constant, solution is $y=a e^{-x \sqrt{q} / \epsilon}+b e^{x \sqrt{q} / \epsilon}$.
This motivates ansatz

$$
y \sim e^{\theta(x) / \epsilon}\left(y_{0}(x)+\epsilon y_{1}(x)+\epsilon^{2} y_{2}+\ldots\right)
$$

where $\theta(x)$ is a fast scale variable to be determined. Substitution into the equation gives

$$
\theta_{x}^{2} y_{0}+\epsilon\left[\theta_{x x} y_{0}+2 \theta_{x} y_{0 x}+\left(\theta_{x}\right)^{2} y_{1}\right]-q(x)\left(y_{0}+\epsilon y_{1}+\epsilon^{2} y_{2}\right) \sim 0
$$

A better choice of fast scale

Consider instead same problem written in terms of slow variable to begin with

$$
\epsilon^{2} y^{\prime \prime}-q(x) y=0
$$

If q is constant, solution is $y=a e^{-x \sqrt{q} / \epsilon}+b e^{x \sqrt{q} / \epsilon}$.
This motivates ansatz

$$
y \sim e^{\theta(x) / \epsilon}\left(y_{0}(x)+\epsilon y_{1}(x)+\epsilon^{2} y_{2}+\ldots\right)
$$

where $\theta(x)$ is a fast scale variable to be determined. Substitution into the equation gives

$$
\theta_{x}^{2} y_{0}+\epsilon\left[\theta_{x x} y_{0}+2 \theta_{x} y_{0 x}+\left(\theta_{x}\right)^{2} y_{1}\right]-q(x)\left(y_{0}+\epsilon y_{1}+\epsilon^{2} y_{2}\right) \sim 0
$$

Leading order problem is $\theta_{x}^{2}=q(x)$ ("Eikonal equation"), so that by direct integration, $\theta= \pm \int^{x} \sqrt{q(s)} d s$.

A better choice of fast scale

Consider instead same problem written in terms of slow variable to begin with

$$
\epsilon^{2} y^{\prime \prime}-q(x) y=0
$$

If q is constant, solution is $y=a e^{-x \sqrt{q} / \epsilon}+b e^{x \sqrt{q} / \epsilon}$.
This motivates ansatz

$$
y \sim e^{\theta(x) / \epsilon}\left(y_{0}(x)+\epsilon y_{1}(x)+\epsilon^{2} y_{2}+\ldots\right)
$$

where $\theta(x)$ is a fast scale variable to be determined. Substitution into the equation gives

$$
\theta_{x}^{2} y_{0}+\epsilon\left[\theta_{x x} y_{0}+2 \theta_{x} y_{0 x}+\left(\theta_{x}\right)^{2} y_{1}\right]-q(x)\left(y_{0}+\epsilon y_{1}+\epsilon^{2} y_{2}\right) \sim 0
$$

Leading order problem is $\theta_{x}^{2}=q(x)$ ("Eikonal equation"), so that by direct integration, $\theta= \pm \int^{x} \sqrt{q(s)} d s$.
Problem at $\mathcal{O}(\epsilon)$ simplifies to $\theta_{x x} y_{0}+2 \theta_{x} y_{0 x}=0$, whose solution is $y_{0}(x)=c / \sqrt{\theta_{x}}$.

A better choice of fast scale

Consider instead same problem written in terms of slow variable to begin with

$$
\epsilon^{2} y^{\prime \prime}-q(x) y=0
$$

If q is constant, solution is $y=a e^{-x \sqrt{q} / \epsilon}+b e^{x \sqrt{q} / \epsilon}$.
This motivates ansatz

$$
y \sim e^{\theta(x) / \epsilon}\left(y_{0}(x)+\epsilon y_{1}(x)+\epsilon^{2} y_{2}+\ldots\right)
$$

where $\theta(x)$ is a fast scale variable to be determined. Substitution into the equation gives

$$
\theta_{x}^{2} y_{0}+\epsilon\left[\theta_{x x} y_{0}+2 \theta_{x} y_{0 x}+\left(\theta_{x}\right)^{2} y_{1}\right]-q(x)\left(y_{0}+\epsilon y_{1}+\epsilon^{2} y_{2}\right) \sim 0
$$

Leading order problem is $\theta_{x}^{2}=q(x)$ ("Eikonal equation"), so that by direct integration, $\theta= \pm \int^{x} \sqrt{q(s)} d s$.
Problem at $\mathcal{O}(\epsilon)$ simplifies to $\theta_{x x} y_{0}+2 \theta_{x} y_{0 x}=0$, whose solution is $y_{0}(x)=c / \sqrt{\theta_{x}}$.
Superposition of leading order solutions:

$$
y \sim q(x)^{-1 / 4}\left[a_{0} \exp \left(-\frac{1}{\epsilon} \int^{x} \sqrt{q(s)} d s\right)+b_{0} \exp \left(\frac{1}{\epsilon} \int^{x} \sqrt{q(s)} d s\right)\right]
$$

An eigenvalue problem

Consider

$$
y^{\prime \prime}+\lambda^{2} e^{2 x} y=0, \quad y(0)=0=y(1)
$$

Setting $\lambda=1 / \epsilon$ puts this in form of previous problem, providing $\lambda \gg 1$.

An eigenvalue problem

Consider

$$
y^{\prime \prime}+\lambda^{2} e^{2 x} y=0, \quad y(0)=0=y(1)
$$

Setting $\lambda=1 / \epsilon$ puts this in form of previous problem, providing $\lambda \gg 1$. WKB solution is immediately $y \sim e^{-x / 2}\left[a_{0} \cos \left(\lambda e^{x}\right)+b_{0} \sin \left(\lambda e^{x}\right)\right]$. Implementing boundary conditions gives

$$
\begin{array}{r}
a_{0} \cos \lambda+b_{0} \sin \lambda=0 \\
a_{0} \cos (\lambda e)+b_{0} \sin (\lambda e)=0
\end{array}
$$

An eigenvalue problem

Consider

$$
y^{\prime \prime}+\lambda^{2} e^{2 x} y=0, \quad y(0)=0=y(1)
$$

Setting $\lambda=1 / \epsilon$ puts this in form of previous problem, providing $\lambda \gg 1$.
WKB solution is immediately $y \sim e^{-x / 2}\left[a_{0} \cos \left(\lambda e^{x}\right)+b_{0} \sin \left(\lambda e^{x}\right)\right]$. Implementing boundary conditions gives

$$
\begin{aligned}
a_{0} \cos \lambda+b_{0} \sin \lambda & =0 \\
a_{0} \cos (\lambda e)+b_{0} \sin (\lambda e) & =0
\end{aligned}
$$

Eigenvalues correspond to where this linear system is singular,

$$
\cos (\lambda) \sin (e \lambda)-\sin (\lambda) \cos (e \lambda)=\sin (\lambda(e-1))=0
$$

It follows that $\lambda_{n} \sim n \pi /(e-1)$ for $n=1,2,3, \ldots$ and eigenfunctions are

$$
y_{n} \sim e^{-x / 2}\left[\cos \left(\lambda_{n} e^{x}\right)-\frac{\cos \lambda_{n}}{\sin \lambda_{n}} \sin \left(\lambda_{n} e^{x}\right)\right] .
$$

An eigenvalue problem

Consider

$$
y^{\prime \prime}+\lambda^{2} e^{2 x} y=0, \quad y(0)=0=y(1)
$$

Setting $\lambda=1 / \epsilon$ puts this in form of previous problem, providing $\lambda \gg 1$.
WKB solution is immediately $y \sim e^{-x / 2}\left[a_{0} \cos \left(\lambda e^{x}\right)+b_{0} \sin \left(\lambda e^{x}\right)\right]$. Implementing boundary conditions gives

$$
\begin{aligned}
a_{0} \cos \lambda+b_{0} \sin \lambda & =0 \\
a_{0} \cos (\lambda e)+b_{0} \sin (\lambda e) & =0
\end{aligned}
$$

Eigenvalues correspond to where this linear system is singular,

$$
\cos (\lambda) \sin (e \lambda)-\sin (\lambda) \cos (e \lambda)=\sin (\lambda(e-1))=0
$$

It follows that $\lambda_{n} \sim n \pi /(e-1)$ for $n=1,2,3, \ldots$ and eigenfunctions are

$$
y_{n} \sim e^{-x / 2}\left[\cos \left(\lambda_{n} e^{x}\right)-\frac{\cos \lambda_{n}}{\sin \lambda_{n}} \sin \left(\lambda_{n} e^{x}\right)\right] .
$$

But how good is this approximation?

Turning points and validity of approximation

The WKB formula describes both exponential and oscillatory behavior, delineated by values of x where $q(x)=0$, called turning points.

The WKB formula describes both exponential and oscillatory behavior, delineated by values of x where $q(x)=0$, called turning points.
To investigate validity of expansion near turning points, continue to $\mathcal{O}\left(\epsilon^{2}\right)$,

$$
2 \theta_{x} y_{1 x}+\theta_{x x} y_{1}=-y_{0}^{\prime \prime}
$$

Find particular solution by variation of parameters $y_{1}=\omega(x) y_{0}(x)$, so that

$$
\omega=\frac{q_{x}}{8 q^{3 / 2}}+\frac{1}{32} \int^{x} \frac{q_{x}^{2}(s)}{q^{5 / 2}} d s
$$

The WKB formula describes both exponential and oscillatory behavior, delineated by values of x where $q(x)=0$, called turning points. To investigate validity of expansion near turning points, continue to $\mathcal{O}\left(\epsilon^{2}\right)$,

$$
2 \theta_{x} y_{1 \times}+\theta_{x x} y_{1}=-y_{0}^{\prime \prime}
$$

Find particular solution by variation of parameters $y_{1}=\omega(x) y_{0}(x)$, so that

$$
\omega=\frac{q_{x}}{8 q^{3 / 2}}+\frac{1}{32} \int^{x} \frac{q_{x}^{2}(s)}{q^{5 / 2}} d s
$$

Near first order turning point $x_{0}, q \sim C\left(x-x_{0}\right)$ so that $y_{1}=\mathcal{O}\left(q^{-3 / 2}\right)$ for small q. Expansion will be disordered when this is $\mathcal{O}(1 / \epsilon)$ or $q=\mathcal{O}\left(\epsilon^{2 / 3}\right)$. Resolution: seek internal layer solution near turning point which matches outer WKB solution.

Internal layer solution

Suppose that turning point is $x=0$ and $q^{\prime}(0) \equiv Q>0$. Letting $z=x / \epsilon^{\beta}$ be scaled variable, $Y(z)=y(x)$ solves

$$
\epsilon^{2-2 \beta} Y^{\prime \prime}-\epsilon^{\beta} Q z Y \sim 0
$$

Internal layer solution

Suppose that turning point is $x=0$ and $q^{\prime}(0) \equiv Q>0$. Letting $z=x / \epsilon^{\beta}$ be scaled variable, $Y(z)=y(x)$ solves

$$
\epsilon^{2-2 \beta} Y^{\prime \prime}-\epsilon^{\beta} Q z Y \sim 0
$$

Balance implies $\beta=2 / 3$ (as expected). Expand $Y=\epsilon^{\gamma} Y_{0}(z)+\ldots$ so that Y_{0} solves Airy equation $Y_{0 z z}-Q z Y_{0}$, whose solution is

$$
Y_{0}=a \operatorname{Ai}\left(Q^{1 / 3} z\right)+b \operatorname{Bi}\left(Q^{1 / 3} z\right)
$$

Suppose that turning point is $x=0$ and $q^{\prime}(0) \equiv Q>0$. Letting $z=x / \epsilon^{\beta}$ be scaled variable, $Y(z)=y(x)$ solves

$$
\epsilon^{2-2 \beta} Y^{\prime \prime}-\epsilon^{\beta} Q z Y \sim 0
$$

Balance implies $\beta=2 / 3$ (as expected). Expand $Y=\epsilon^{\gamma} Y_{0}(z)+\ldots$ so that Y_{0} solves Airy equation $Y_{0 z z}-Q z Y_{0}$, whose solution is

$$
Y_{0}=a \operatorname{Ai}\left(Q^{1 / 3} z\right)+b \operatorname{Bi}\left(Q^{1 / 3} z\right)
$$

Matching requires behavior

$$
\text { Aiz } \sim \begin{cases}\frac{1}{\sqrt{\pi}|z|^{1 / 4}} \cos \left(2 / 3|z|^{3 / 2}-\pi / 4\right) & z \rightarrow-\infty \\ \frac{1}{2 \sqrt{\pi}|z|^{1 / 4}} \exp \left(-2 / 3|z|^{3 / 2}\right) & z \rightarrow+\infty\end{cases}
$$

and

$$
\operatorname{Biz} \sim \begin{cases}\frac{1}{\sqrt{\pi}|z|^{1 / 4}} \cos \left(2 / 3|z|^{3 / 2}+\pi / 4\right) & z \rightarrow-\infty \\ \frac{1}{\sqrt{\pi}|z|^{1 / 4}} \exp \left(2 / 3|z|^{3 / 2}\right) & z \rightarrow+\infty\end{cases}
$$

Matching to outer for $x>0$

Note first that since $q \sim Q x, \frac{1}{\epsilon} \int_{0}^{x} \sqrt{q(s)} d s \sim \frac{2}{3} Q^{1 / 2} z^{3 / 2}$ and $q(x)^{-1 / 4} \sim \epsilon^{-1 / 6} Q^{-1 / 4} z^{-1 / 4}$ (choose branch $z^{-1 / 4}=e^{-i \pi / 4}|z|^{1 / 4}$ for $z<0$).

Matching to outer for $x>0$

Note first that since $q \sim Q x, \frac{1}{\epsilon} \int_{0}^{x} \sqrt{q(s)} d s \sim \frac{2}{3} Q^{1 / 2} z^{3 / 2}$ and $q(x)^{-1 / 4} \sim \epsilon^{-1 / 6} Q^{-1 / 4} z^{-1 / 4}$ (choose branch $z^{-1 / 4}=e^{-i \pi / 4}|z|^{1 / 4}$ for $z<0$).

The outer solution to the right of the turning point is

$$
\begin{aligned}
y_{R} & \sim q(x)^{-1 / 4}\left[a_{R} \exp \left(-\frac{1}{\epsilon} \int_{0}^{x} \sqrt{q(s)} d s\right)+b_{R} \exp \left(\frac{1}{\epsilon} \int_{0}^{x} \sqrt{q(s)} d s\right)\right] \\
& \sim \epsilon^{-1 / 6} Q^{-1 / 4} z^{-1 / 4}\left[a_{R} e^{-2 / 3 Q^{1 / 2} z^{3 / 2}}+b_{R} e^{2 / 3 Q^{1 / 2} z^{3 / 2}}\right] .
\end{aligned}
$$

Matching to outer for $x>0$

Note first that since $q \sim Q x, \frac{1}{\epsilon} \int_{0}^{x} \sqrt{q(s)} d s \sim \frac{2}{3} Q^{1 / 2} z^{3 / 2}$ and $q(x)^{-1 / 4} \sim \epsilon^{-1 / 6} Q^{-1 / 4} z^{-1 / 4}$ (choose branch $z^{-1 / 4}=e^{-i \pi / 4}|z|^{1 / 4}$ for $z<0$).

The outer solution to the right of the turning point is

$$
\begin{aligned}
y_{R} & \sim q(x)^{-1 / 4}\left[a_{R} \exp \left(-\frac{1}{\epsilon} \int_{0}^{x} \sqrt{q(s)} d s\right)+b_{R} \exp \left(\frac{1}{\epsilon} \int_{0}^{x} \sqrt{q(s)} d s\right)\right] \\
& \sim \epsilon^{-1 / 6} Q^{-1 / 4} z^{-1 / 4}\left[a_{R} e^{-2 / 3 Q^{1 / 2} z^{3 / 2}}+b_{R} e^{2 / 3 Q^{1 / 2} z^{3 / 2}}\right] .
\end{aligned}
$$

Compare to inner expansion for large $z>0$,

$$
Y \sim \epsilon^{\gamma}\left[\frac{a}{2 \sqrt{\pi} Q^{1 / 12} z^{1 / 4}} e^{-2 / 3 Q^{1 / 2} z^{3 / 2}}+\frac{b}{2 \sqrt{\pi} Q^{1 / 12} z^{1 / 4}} e^{2 / 3 Q^{1 / 2} z^{3 / 2}}\right]
$$

It follows that $\gamma=-1 / 6$, and

$$
a_{R}=\frac{a Q^{1 / 6}}{2 \sqrt{\pi}}, \quad b_{R}=\frac{b Q^{1 / 6}}{\sqrt{\pi}}
$$

Matching for $x<0$

The outer solution to left of the turning point is

$$
\begin{aligned}
y_{R} & \sim q(x)^{-1 / 4}\left[a_{L} \exp \left(-\frac{1}{\epsilon} \int_{0}^{x} \sqrt{q(s)} d s\right)+b_{L} \exp \left(\frac{1}{\epsilon} \int_{0}^{x} \sqrt{q(s)} d s\right)\right] \\
& \sim \epsilon^{-1 / 6} Q^{-1 / 4}|z|^{-1 / 4}\left[a_{L} e^{i\left(\frac{2}{3} Q^{1 / 2} z^{3 / 2}-\pi / 4\right)}+b_{L} e^{-i\left(\frac{2}{3} Q^{1 / 2} z^{3 / 2}+\pi / 4\right.}\right] .
\end{aligned}
$$

Matching for $x<0$

The outer solution to left of the turning point is

$$
\begin{aligned}
y_{R} & \sim q(x)^{-1 / 4}\left[a_{L} \exp \left(-\frac{1}{\epsilon} \int_{0}^{x} \sqrt{q(s)} d s\right)+b_{L} \exp \left(\frac{1}{\epsilon} \int_{0}^{x} \sqrt{q(s)} d s\right)\right] \\
& \sim \epsilon^{-1 / 6} Q^{-1 / 4}|z|^{-1 / 4}\left[a_{L} e^{i\left(\frac{2}{3} Q^{1 / 2} z^{3 / 2}-\pi / 4\right)}+b_{L} e^{-i\left(\frac{2}{3} Q^{1 / 2} z^{3 / 2}+\pi / 4\right)}\right] .
\end{aligned}
$$

Compare to inner expansion for large $-z$,

$$
\begin{aligned}
& Y \sim \frac{\epsilon^{\gamma}}{\sqrt{\pi}|z|^{1 / 4} Q^{1 / 12}}\left[a \cos \left(\frac{2}{3} Q^{1 / 2}|z|^{3 / 2}-\pi / 4\right)+b \cos \left(\frac{2}{3} Q^{1 / 2}|z|^{3 / 2}+\pi / 4\right)\right] \\
& =\frac{\epsilon^{\gamma}}{2 \sqrt{\pi}|z|^{1 / 4} Q^{1 / 12}}\left[\left(a e^{-i \pi / 4}+b e^{i \pi / 4}\right) e^{(2 i / 3) Q^{1 / 2} z^{3 / 2}}+\left(a e^{i \pi / 4}+b e^{-i \pi / 4}\right) e^{-(2 i / 3) Q^{1 / 2} z^{3}}\right.
\end{aligned}
$$

It follows that

$$
a_{L}=\frac{Q^{1 / 6}}{2 \sqrt{\pi}}(b+i a), \quad b_{L}=\frac{Q^{1 / 6}}{2 \sqrt{\pi}}(a+i b)
$$

Matching for $x<0$

The outer solution to left of the turning point is

$$
\begin{aligned}
y_{R} & \sim q(x)^{-1 / 4}\left[a_{L} \exp \left(-\frac{1}{\epsilon} \int_{0}^{x} \sqrt{q(s)} d s\right)+b_{L} \exp \left(\frac{1}{\epsilon} \int_{0}^{x} \sqrt{q(s)} d s\right)\right] \\
& \sim \epsilon^{-1 / 6} Q^{-1 / 4}|z|^{-1 / 4}\left[a_{L} e^{i\left(\frac{2}{3} Q^{1 / 2} z^{3 / 2}-\pi / 4\right)}+b_{L} e^{-i\left(\frac{2}{3} Q^{1 / 2} z^{3 / 2}+\pi / 4\right)}\right] .
\end{aligned}
$$

Compare to inner expansion for large $-z$,

$$
\begin{aligned}
& Y \sim \frac{\epsilon^{\gamma}}{\sqrt{\pi}|z|^{1 / 4} Q^{1 / 12}}\left[a \cos \left(\frac{2}{3} Q^{1 / 2}|z|^{3 / 2}-\pi / 4\right)+b \cos \left(\frac{2}{3} Q^{1 / 2}|z|^{3 / 2}+\pi / 4\right)\right] \\
& =\frac{\epsilon^{\gamma}}{2 \sqrt{\pi}|z|^{1 / 4} Q^{1 / 12}}\left[\left(a e^{-i \pi / 4}+b e^{i \pi / 4}\right) e^{(2 i / 3) Q^{1 / 2} z^{3 / 2}}+\left(a e^{i \pi / 4}+b e^{-i \pi / 4}\right) e^{-(2 i / 3) Q^{1 / 2} z^{3}}\right.
\end{aligned}
$$

It follows that

$$
a_{L}=\frac{Q^{1 / 6}}{2 \sqrt{\pi}}(b+i a), \quad b_{L}=\frac{Q^{1 / 6}}{2 \sqrt{\pi}}(a+i b)
$$

Upshot: coefficients $a_{R}, a_{L}, b_{R}, b_{L}$ are linearly related by connection formula

$$
\binom{a_{L}}{b_{L}}=\left(\begin{array}{ll}
i & 1 / 2 \\
1 & i / 2
\end{array}\right)\binom{a_{R}}{b_{R}} .
$$

For $q^{\prime}(0)<0$ instead,

$$
\binom{a_{R}}{b_{R}}=\left(\begin{array}{ll}
i / 2 & 1 \\
1 / 2 & i
\end{array}\right)\binom{a_{L}}{b_{L}} .
$$

A two-turning point problem
Consider case where $q(x)$ is positive except on interval (x_{1}, x_{2}), and boundary conditions are $y(\pm \infty)=0$.

A two-turning point problem

Consider case where $q(x)$ is positive except on interval $\left(x_{1}, x_{2}\right)$, and boundary conditions are $y(\pm \infty)=0$.

Immediately,

$$
y \sim\left\{\begin{array}{lll}
\frac{A_{L}}{q^{1 / 4}} \exp \left(\frac{1}{\epsilon} \int_{x_{1}}^{x} \sqrt{q(s)} d s\right), & B_{L}=0 & x<x_{1} \\
\frac{a_{R}}{q^{1 / 4}} \exp \left(-\frac{1}{\epsilon} \int_{x_{2}}^{x} \sqrt{q(s)} d s\right), & b_{r}=0 & x>x_{2}
\end{array}\right.
$$

For $x_{1}<x<x_{2}$, have equivalent expressions for y

$$
\begin{aligned}
& \frac{A_{R}}{q^{1 / 4}} \exp \left(\frac{1}{\epsilon} \int_{x_{1}}^{x} \sqrt{q(s)} d s\right)+\frac{B_{R}}{q^{1 / 4}} \exp \left(-\frac{1}{\epsilon} \int_{x_{1}}^{x} \sqrt{q(s)} d s\right)= \\
& \frac{a_{L}}{q^{1 / 4}} \exp \left(-\frac{1}{\epsilon} \int_{x_{2}}^{x} \sqrt{q(s)} d s\right)+\frac{b_{L}}{q^{1 / 4}} \exp \left(\frac{1}{\epsilon} \int_{x_{2}}^{x} \sqrt{q(s)} d s\right) .
\end{aligned}
$$

It follows that $b_{l}=I A_{R}$ and $a_{L}=B_{R} / I$ where $I=\exp \left(\frac{1}{\epsilon} \int_{x_{1}}^{x_{2}} \sqrt{q(s)} d s\right)$.

A two-turning point problem, cont.

Connection formulas imply two independent formulas for a_{R},

$$
i a_{R}=a_{L}=B_{R} / I=A_{L} /(2 I), \quad a_{R}=b_{L}=i A_{R}=i l A_{L} / 2
$$

Elimination gives $I^{2}=-1$ so that

$$
\exp \left(\frac{1}{\epsilon} \int_{x_{1}}^{x_{2}} \sqrt{q(s)} d s\right)=\exp (i \pi+n \pi i)
$$

or

$$
\frac{1}{\epsilon} \int_{x_{1}}^{x_{2}} \sqrt{-q(s)} d s=\left(n+\frac{1}{2}\right) \pi, \quad n=0,1,2, \ldots
$$

This constrains what $q(x)$ might be for a nontrivial solution to exist.

An eigenvalue problem with two turning points

Consider

$$
y^{\prime \prime}-|x| y=-\lambda y, \quad y(\pm \infty)=0
$$

which is same as

$$
\frac{1}{\lambda} y^{\prime \prime}=q(x) y, \quad q(x)=\frac{|x|-\lambda}{\lambda}
$$

(idea is that large λ is like small ϵ)

An eigenvalue problem with two turning points

Consider

$$
y^{\prime \prime}-|x| y=-\lambda y, \quad y(\pm \infty)=0
$$

which is same as

$$
\frac{1}{\lambda} y^{\prime \prime}=q(x) y, \quad q(x)=\frac{|x|-\lambda}{\lambda}
$$

(idea is that large λ is like small ϵ)
Comparing to two-turning point solution, have $x_{1}=-\lambda$ and $x_{2}=\lambda$. Solvability is

$$
\int_{-\lambda}^{\lambda} \sqrt{\lambda-|x|} d x=\frac{4}{3} \lambda^{3 / 2}=\left(n+\frac{1}{2}\right) \pi, \quad n=0,1,2, \ldots
$$

so that

$$
\lambda \sim\left[\frac{3 \pi}{4}\left(n+\frac{1}{2}\right)\right]^{2 / 3}
$$

Typical eigenfunction:

