
Asymptotic Methods

WKB expansion



Failure of multiple scales with slowly varying coefficients

Consider
y ′′ + q(εx)y = 0, q > 0.

It seems reasonable to introduce slow scale X = εx , so that

yxx + 2εyxX + ε2yXX + q(X )y = 0.

Expand y = y0(x ,X ) + εy1(x ,X ) + . . ., so that

y0xx + q(X )y = 0,

whose general solution is y0 = a(X ) cos(
√

q(X )x) + b(X ) sin(
√

q(X )x).
The O(ε) terms are

y1xx + y1 =− 2y0xX = (2a′
√
q + aq′/

√
q) sin(

√
qx) +

aq′
2

2q
x cos(

√
qx)

− (2b′
√
q + bq′/

√
q) cos(

√
qx)− bq′

2

2q
x sin(

√
qx).

While it is possible to eliminate secular terms with cos(
√
qx) and sin(

√
qx),

still left with terms which produce secular growth unless a, b = 0.
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A better choice of fast scale

Consider instead same problem written in terms of slow variable to begin with

ε2y ′′ − q(x)y = 0,

If q is constant, solution is y = ae−x
√
q/ε + bex

√
q/ε.

This motivates ansatz

y ∼ eθ(x)/ε(y0(x) + εy1(x) + ε2y2 + . . .),

where θ(x) is a fast scale variable to be determined. Substitution into the
equation gives

θ2xy0 + ε[θxxy0 + 2θxy0x + (θx)2y1]− q(x)(y0 + εy1 + ε2y2) ∼ 0.

Leading order problem is θ2x = q(x) (”Eikonal equation”), so that by direct
integration, θ = ±

∫ x √
q(s)ds.

Problem at O(ε) simplifies to θxxy0 + 2θxy0x = 0, whose solution is
y0(x) = c/

√
θx .

Superposition of leading order solutions:

y ∼ q(x)−1/4

[
a0 exp

(
− 1

ε

∫ x √
q(s)ds

)
+ b0 exp

(1

ε

∫ x √
q(s)ds

)]
.
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An eigenvalue problem

Consider
y ′′ + λ2e2xy = 0, y(0) = 0 = y(1).

Setting λ = 1/ε puts this in form of previous problem,providing λ� 1.

WKB solution is immediately y ∼ e−x/2[a0 cos(λex) + b0 sin(λex)].
Implementing boundary conditions gives

a0 cosλ+ b0 sinλ = 0,

a0 cos(λe) + b0 sin(λe) = 0.

Eigenvalues correspond to where this linear system is singular,

cos(λ) sin(eλ)− sin(λ) cos(eλ) = sin(λ(e − 1)) = 0.

It follows that λn ∼ nπ/(e − 1) for n = 1, 2, 3, . . . and eigenfunctions are

yn ∼ e−x/2[cos(λne
x)− cosλn

sinλn
sin(λne

x)].

But how good is this approximation?
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Turning points and validity of approximation

The WKB formula describes both exponential and oscillatory behavior,
delineated by values of x where q(x) = 0, called turning points.

To investigate validity of expansion near turning points, continue to O(ε2),

2θxy1x + θxxy1 = −y ′′0 .

Find particular solution by variation of parameters y1 = ω(x)y0(x), so that

ω =
qx

8q3/2
+

1

32

∫ x q2
x (s)

q5/2
ds.

Near first order turning point x0, q ∼ C(x − x0) so that y1 = O(q−3/2) for
small q. Expansion will be disordered when this is O(1/ε) or q = O(ε2/3).

Resolution: seek internal layer solution near turning point which matches outer
WKB solution.
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Internal layer solution

Suppose that turning point is x = 0 and q′(0) ≡ Q > 0. Letting z = x/εβ be
scaled variable, Y (z) = y(x) solves

ε2−2βY ′′ − εβQzY ∼ 0

Balance implies β = 2/3 (as expected). Expand Y = εγY0(z) + . . . so that Y0

solves Airy equation Y0zz − QzY0, whose solution is

Y0 = aAi(Q1/3z) + bBi(Q1/3z).

Matching requires behavior

Aiz ∼

{
1√

π|z|1/4 cos(2/3|z |3/2 − π/4) z → −∞,
1

2
√
π|z|1/4 exp(−2/3|z |3/2) z → +∞

and

Biz ∼

{
1√

π|z|1/4 cos(2/3|z |3/2 + π/4) z → −∞,
1√

π|z|1/4 exp(2/3|z |3/2) z → +∞.



Internal layer solution

Suppose that turning point is x = 0 and q′(0) ≡ Q > 0. Letting z = x/εβ be
scaled variable, Y (z) = y(x) solves

ε2−2βY ′′ − εβQzY ∼ 0

Balance implies β = 2/3 (as expected). Expand Y = εγY0(z) + . . . so that Y0

solves Airy equation Y0zz − QzY0, whose solution is

Y0 = aAi(Q1/3z) + bBi(Q1/3z).

Matching requires behavior

Aiz ∼

{
1√

π|z|1/4 cos(2/3|z |3/2 − π/4) z → −∞,
1

2
√
π|z|1/4 exp(−2/3|z |3/2) z → +∞

and

Biz ∼

{
1√

π|z|1/4 cos(2/3|z |3/2 + π/4) z → −∞,
1√

π|z|1/4 exp(2/3|z |3/2) z → +∞.



Internal layer solution

Suppose that turning point is x = 0 and q′(0) ≡ Q > 0. Letting z = x/εβ be
scaled variable, Y (z) = y(x) solves

ε2−2βY ′′ − εβQzY ∼ 0

Balance implies β = 2/3 (as expected). Expand Y = εγY0(z) + . . . so that Y0

solves Airy equation Y0zz − QzY0, whose solution is

Y0 = aAi(Q1/3z) + bBi(Q1/3z).

Matching requires behavior

Aiz ∼

{
1√

π|z|1/4 cos(2/3|z |3/2 − π/4) z → −∞,
1

2
√
π|z|1/4 exp(−2/3|z |3/2) z → +∞

and

Biz ∼

{
1√

π|z|1/4 cos(2/3|z |3/2 + π/4) z → −∞,
1√

π|z|1/4 exp(2/3|z |3/2) z → +∞.



Matching to outer for x > 0

Note first that since q ∼ Qx , 1
ε

∫ x

0

√
q(s)ds ∼ 2

3
Q1/2z3/2 and

q(x)−1/4 ∼ ε−1/6Q−1/4z−1/4 (choose branch z−1/4 = e−iπ/4|z |1/4 for z < 0).

The outer solution to the right of the turning point is

yR ∼q(x)−1/4

[
aR exp

(
− 1

ε

∫ x

0

√
q(s)ds

)
+ bR exp

(1

ε

∫ x

0

√
q(s)ds

)]
∼ε−1/6Q−1/4z−1/4[aRe

−2/3Q1/2z3/2 + bRe
2/3Q1/2z3/2 ].

Compare to inner expansion for large z > 0,

Y ∼ εγ
[

a

2
√
πQ1/12z1/4

e−2/3Q1/2z3/2 +
b

2
√
πQ1/12z1/4

e2/3Q
1/2z3/2

]
.

It follows that γ = −1/6, and

aR =
aQ1/6

2
√
π
, bR =

bQ1/6

√
π
.
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Matching for x < 0

The outer solution to left of the turning point is

yR ∼q(x)−1/4

[
aL exp

(
− 1

ε

∫ x

0

√
q(s)ds

)
+ bL exp

(1

ε

∫ x

0

√
q(s)ds

)]
∼ε−1/6Q−1/4|z |−1/4[aLe

i( 2
3
Q1/2z3/2−π/4) + bLe

−i( 2
3
Q1/2z3/2+π/4)].

Compare to inner expansion for large −z ,

Y ∼ εγ√
π|z |1/4Q1/12

[
a cos(

2

3
Q1/2|z |3/2 − π/4) + b cos(

2

3
Q1/2|z |3/2 + π/4)

]
=

εγ

2
√
π|z |1/4Q1/12

[
(ae−iπ/4 + be iπ/4)e(2i/3)Q

1/2z3/2 + (ae iπ/4 + be−iπ/4)e−(2i/3)Q1/2z3/2
]
.

It follows that

aL =
Q1/6

2
√
π

(b + ia), bL =
Q1/6

2
√
π

(a + ib).

Upshot: coefficients aR , aL, bR , bL are linearly related by connection formula(
aL
bL

)
=

(
i 1/2
1 i/2

)(
aR
bR

)
.

For q′(0) < 0 instead, (
aR
bR

)
=

(
i/2 1
1/2 i

)(
aL
bL

)
.



Matching for x < 0

The outer solution to left of the turning point is

yR ∼q(x)−1/4

[
aL exp

(
− 1

ε

∫ x

0

√
q(s)ds

)
+ bL exp

(1

ε

∫ x

0

√
q(s)ds

)]
∼ε−1/6Q−1/4|z |−1/4[aLe

i( 2
3
Q1/2z3/2−π/4) + bLe

−i( 2
3
Q1/2z3/2+π/4)].

Compare to inner expansion for large −z ,

Y ∼ εγ√
π|z |1/4Q1/12

[
a cos(

2

3
Q1/2|z |3/2 − π/4) + b cos(

2

3
Q1/2|z |3/2 + π/4)

]
=

εγ

2
√
π|z |1/4Q1/12

[
(ae−iπ/4 + be iπ/4)e(2i/3)Q

1/2z3/2 + (ae iπ/4 + be−iπ/4)e−(2i/3)Q1/2z3/2
]
.

It follows that

aL =
Q1/6

2
√
π

(b + ia), bL =
Q1/6

2
√
π

(a + ib).

Upshot: coefficients aR , aL, bR , bL are linearly related by connection formula(
aL
bL

)
=

(
i 1/2
1 i/2

)(
aR
bR

)
.

For q′(0) < 0 instead, (
aR
bR

)
=

(
i/2 1
1/2 i

)(
aL
bL

)
.



Matching for x < 0

The outer solution to left of the turning point is

yR ∼q(x)−1/4

[
aL exp

(
− 1

ε

∫ x

0

√
q(s)ds

)
+ bL exp

(1

ε

∫ x

0

√
q(s)ds

)]
∼ε−1/6Q−1/4|z |−1/4[aLe

i( 2
3
Q1/2z3/2−π/4) + bLe

−i( 2
3
Q1/2z3/2+π/4)].

Compare to inner expansion for large −z ,

Y ∼ εγ√
π|z |1/4Q1/12

[
a cos(

2

3
Q1/2|z |3/2 − π/4) + b cos(

2

3
Q1/2|z |3/2 + π/4)

]
=

εγ

2
√
π|z |1/4Q1/12

[
(ae−iπ/4 + be iπ/4)e(2i/3)Q

1/2z3/2 + (ae iπ/4 + be−iπ/4)e−(2i/3)Q1/2z3/2
]
.

It follows that

aL =
Q1/6

2
√
π

(b + ia), bL =
Q1/6

2
√
π

(a + ib).

Upshot: coefficients aR , aL, bR , bL are linearly related by connection formula(
aL
bL

)
=

(
i 1/2
1 i/2

)(
aR
bR

)
.

For q′(0) < 0 instead, (
aR
bR

)
=

(
i/2 1
1/2 i

)(
aL
bL

)
.



A two-turning point problem

Consider case where q(x) is positive except on interval (x1, x2), and boundary
conditions are y(±∞) = 0.

Immediately,

y ∼

{
AL

q1/4
exp( 1

ε

∫ x

x1

√
q(s)ds), BL = 0 x < x1,

aR
q1/4

exp(− 1
ε

∫ x

x2

√
q(s)ds), br = 0 x > x2.

For x1 < x < x2, have equivalent expressions for y

AR

q1/4
exp

(
1

ε

∫ x

x1

√
q(s)ds

)
+

BR

q1/4
exp

(
−1

ε

∫ x

x1

√
q(s)ds

)
=

aL
q1/4

exp

(
−1

ε

∫ x

x2

√
q(s)ds

)
+

bL
q1/4

exp

(
1

ε

∫ x

x2

√
q(s)ds

)
.

It follows that bl = IAR and aL = BR/I where I = exp( 1
ε

∫ x2
x1

√
q(s)ds).
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A two-turning point problem, cont.

Connection formulas imply two independent formulas for aR ,

iaR = aL = BR/I = AL/(2I ), aR = bL = iAR = iIAL/2.

Elimination gives I 2 = −1 so that

exp

(
1

ε

∫ x2

x1

√
q(s)ds

)
= exp(iπ + nπi),

or
1

ε

∫ x2

x1

√
−q(s)ds = (n +

1

2
)π, n = 0, 1, 2, . . .

This constrains what q(x) might be for a nontrivial solution to exist.



An eigenvalue problem with two turning points

Consider
y ′′ − |x |y = −λy , y(±∞) = 0,

which is same as
1

λ
y ′′ = q(x)y , q(x) =

|x | − λ
λ

.

(idea is that large λ is like small ε)

Comparing to two-turning point solution, have x1 = −λ and x2 = λ. Solvability
is ∫ λ

−λ

√
λ− |x |dx =

4

3
λ3/2 = (n +

1

2
)π, n = 0, 1, 2, . . .

so that

λ ∼
[

3π

4
(n +

1

2
)

]2/3
.

Typical eigenfunction:
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