Asymptotic Methods

WKB expansion
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whose general solution is yo = a(X) cos(1/q(X)x) + b(X)sin(+/q(X)x).
The O(e) terms are
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azqq x cos(/gx)

ylxx + yl = — 2}/OXX = (23l\/a+ aq//\/a) Sin(\/ax) +

— (2b'\/q + bq' //q) cos(\/qx) — b2q' xsin(y/gx).

q

While it is possible to eliminate secular terms with cos(,/gx) and sin(,/gx),
still left with terms which produce secular growth unless a, b = 0.
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A better choice of fast scale

Consider instead same problem written in terms of slow variable to begin with
2
ey’ —aq(x)y =0,

If g is constant, solution is y = ae V¢ 4 pe*Va/<,
This motivates ansatz

y ~ (o (x) + enr(x) + Eya + ...,

where 6(x) is a fast scale variable to be determined. Substitution into the
equation gives

02y0 + €feyo + 20xy0x + (0x)°y1] — q(x) (Yo + ey1 + €2y2) ~ 0.
Leading order problem is 82 = g(x) (”Eikonal equation”), so that by direct
integration, 0 = + [*/q(s)ds.

Problem at O(e) simplifies to O yo + 20« yox = 0, whose solution is

Yo(x) = ¢/vbx.

Superposition of leading order solutions:

y ~q(x)"1/* [ao exp ( - %/x \/@ds) + bg exp (% /X \/@ds)} .
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Consider
Y '+ Xy =0, y(0)=0=y(1).
Setting A = 1/¢ puts this in form of previous problem,providing A > 1.
WKB solution is immediately y ~ e™*/2[ag cos(Ae*) + by sin(Ae¥)].
Implementing boundary conditions gives
a9 cos A + bpsin A =0,

ag cos(Ae) + by sin(Ae) = 0.

Eigenvalues correspond to where this linear system is singular,
cos(A) sin(eX) — sin(\) cos(eX) = sin(A(e — 1)) = 0.

It follows that A, ~ nm/(e — 1) for n=1,2,3,... and eigenfunctions are
Yo ~ € /?[cos(Ane*) — :)ns))\\,, sin(A,e¥)].

n

But how good is this approximation?
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delineated by values of x where g(x) = 0, called turning points.
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Turning points and validity of approximation

The WKB formula describes both exponential and oscillatory behavior,
delineated by values of x where g(x) = 0, called turning points.
To investigate validity of expansion near turning points, continue to O(€?),

"

29xy1x + exx_yl = Y-

Find particular solution by variation of parameters y1 = w(x)yo(x), so that

g 1 ["gis)
- 8q3/2 32 q5/2

w

Near first order turning point xo, g ~ C(x — X) so that y; = O(q~%/2) for
small g. Expansion will be disordered when this is O(1/¢) or g = O(*/?).

Resolution: seek internal layer solution near turning point which matches outer
WKB solution.
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Internal layer solution

Suppose that turning point is x = 0 and ¢’(0) = Q > 0. Letting z = x/¢” be
scaled variable, Y(z) = y(x) solves

By P QzY ~0

Balance implies 3 = 2/3 (as expected). Expand Y = €”Yp(z) + ... so that Y
solves Airy equation Yy, — QzYs, whose solution is

Yo = aAi(QY*z2) + bBi(Q3z).
Matching requires behavior

Al {f 27 cos(2/3|z)*? — 7 /4) z = —o0,

2\/7‘Z|1/4 eXp(72/3|Z|3/2) z— +Oo

and

iz { A ORI /8 2 o
iz~
exp(2/3|z[*?) z = +o0.

\/ﬂz\l/“
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Note first that since g ~ Qx, %fox v/ q(s)ds ~ %01/223/2 and
q(x)_1/4 -~ 6—1/60—1/42—1/4 (choose branch z—1/4 — e—iﬁ/4|z|1/4 for z < 0)_

The outer solution to the right of the turning point is

YR Nq(x)’l/4 [aR exp ( — %/OX \/@ds) + br exp (% /OX \/@ds)}

_ _ _ _ 1/2_3/2 1/2_3/2
e M Q14, 1/4[aRe 23QV22/2 Ly 2/3Q1 % ).
Compare to inner expansion for large z > 0,

o a _2/3Q1/273/2 b 2/3Q1/2,3/2
Y ~e {42\/77_01/1221/49 +72\/EQI/1221/46 .

It follows that v = —1/6, and

e an/G be — le/G
R 2 R e




Matching for x < 0

The outer solution to left of the turning point is
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N6*1/6Q*1/4|z|*1/4[aLei(%Ql/2z3/277r/4) i bLefi(§01/2z3/2+7r/4)].



Matching for x < 0

The outer solution to left of the turning point is
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Compare to inner expansion for large —z,
al 2 1/2(_13/2 2 H1/2_3/2
Y ~ JAZAQUE [acos(gQ |z — 7 /4) + bcos(gQ |z|*/* + 7 /4)
E"/
= 2/ 2[4 Q2
It follows that
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Matching for x < 0

The outer solution to left of the turning point is

YR ~q(x)71/4 {aL exp ( / Fds) + b exp ( / Fds)}

e VO QA 1/ i(2QY/223/2—x /a) i bLe—:(ng/2 3/2+7r/4)].

lz|~ae
Compare to inner expansion for large —z,
Y e
Vr|z|[/4Q1/12
el
= 2/ 2[4 Q2
It follows that

[acos(%Ql/2|z|3/2 —r/a)+ bcos(§Q1/2\z|3/2 + 7r/4):|

i ; ; 1/2,3/2 i Cin (i 1/2,3
[(ae ”/4+be 7r/4) (2i/3)Q@ + (ae 7r/4+be /4)e (2i/3)Q /

Qs QY6
2\/E(b+ia)7 b = 2f(éﬂrlb)

Upshot: coefficients agr, ar, br, by are linearly related by connection formula

(-G 7))
()= ) ()

a, =

For ¢’(0) < 0 instead,
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A two-turning point problem

Consider case where g(x) is positive except on interval (xi, x2), and boundary
conditions are y(+oo0) = 0.

Immediately,

f—/ﬂ,exp lfxxl\/q(s )ds), B.=0 x< xi,
Y 1/4exp -2 Xz\/ ds) b=0 x> x.

For x; < x < x2, have equivalent expressions for y

2 (ﬁ [ mds)+ ( [ V).

It follows that by = IAg and a = Br/I where | = exp(% X1 *2\/q(s)ds).



A two-turning point problem, cont.

Connection formulas imply two independent formulas for ag,
iaR:aL:BR//:AL/(2I), aR:bL:iAR:iIAL/Z

Elimination gives /> = —1 so that

exp (% /: \/@ds> = exp(im + nmi),

or

1 [ 1
E/ \/T(s)dsz(n_i_i)ﬂ" n:071,2,...
x1

This constrains what g(x) might be for a nontrivial solution to exist.
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An eigenvalue problem with two turning points

Consider
' =Ixly = =Xy, y(£o0) =0,

which is same as

T =aky, alx) = |X|;A

(idea is that large A is like small €)
Comparing to two-turning point solution, have x; = —X and x> = \. Solvability
is

A

4 1
/ VA= |xldx =22 = (n+ Z)r, n=0,1,2,...

Y 3 2

so that

37 1.]%°

Typical eigenfunction:

AV VAL




