Asymptotic Methods

WKB methods: Wave propagation and ray methods

Wave propagation through a slender domain

Consider

$$\epsilon^2 u_{xx} + u_{yy} = u_{tt}, \quad 0 < x < \infty, \quad -G(x) < y < G(x).$$

with $u(x,\pm G(x),t)=0$ and $u(0,y,t)=f(y)\cos(\omega t)$.

Questions: how does the wave propagate as domain narrows? Does is stop propagating all the way to ∞ ?

Wave propagation through a slender domain

Consider

$$\epsilon^2 u_{xx} + u_{yy} = u_{tt}, \quad 0 < x < \infty, \quad -G(x) < y < G(x).$$

with $u(x,\pm G(x),t)=0$ and $u(0,y,t)=f(y)\cos(\omega t)$.

Questions: how does the wave propagate as domain narrows? Does is stop propagating all the way to ∞ ?

WKB approximation

$$u \sim \exp(i(\omega t - \theta(x))/\epsilon)[u_0(x, y) + \epsilon u_1(x, y) + \ldots]$$

leads to

$$-\theta_x^2 - i\epsilon(\theta_{xx}u_0 + 2\theta_xu_{0x} + \ldots) + u_{0yy} + \epsilon u_{1yy} + \ldots = -\omega^2(u_0 + \epsilon u_1 + \ldots)$$

Wave propagation through a slender body, cont.

Leading order problem is

$$u_{0yy} + (\omega^2 - \theta_x^2)u_0 = 0, \quad u_0(x, \pm G(x)) = 0.$$

This is an eigenvalue problem (in the y variable), whose solutions are

$$u_0(x,y) = A(x)\sin[\lambda(y+G)]$$

where by boundary condition, $2\lambda G = n\pi$, n = 1, 2, 3, ... Therefore

$$\theta_x = \pm \sqrt{\omega^2 - \lambda_n^2}.$$

Note higher modes $\lambda_n > \omega$ decay rather than propagate.

Wave propagation through a slender body, cont.

Leading order problem is

$$u_{0yy} + (\omega^2 - \theta_x^2)u_0 = 0, \quad u_0(x, \pm G(x)) = 0.$$

This is an eigenvalue problem (in the y variable), whose solutions are

$$u_0(x,y) = A(x)\sin[\lambda(y+G)]$$

where by boundary condition, $2\lambda G = n\pi$, n = 1, 2, 3, ... Therefore

$$\theta_x = \pm \sqrt{\omega^2 - \lambda_n^2}.$$

Note higher modes $\lambda_n > \omega$ decay rather than propagate.

Next order is

$$u_{1yy} + \lambda_n^2 u_1 = i(\theta_{xx}u_0 + 2\theta_x u_{0x}), \quad u_1(x, \pm G(x), t) = 0.$$

Fredholm solvability implies

$$0 = \int_{-G(x)}^{G(x)} u_0(\theta_{xx}u_0 + 2\theta_xu_{0x})dy = \frac{d}{dx}\int_{-G(x)}^{G(x)} (\theta_xu_0^2)dy$$

so that $\theta_x \int_{-G}^{G} u_0^2 dy = a$ and $A(x) = a/\sqrt{\theta_x G(x)}$, and solution is superposition of

$$u \sim \frac{a}{\sqrt{\theta_x G(x)}} \exp(i[\omega t \pm \theta(x)/\epsilon]) \sin[\lambda_n(y+G)].$$

Turning points x_t are where $2\omega G(x_t) = n\pi$. If G' < 0 with $G(\infty) = 0$, then either

(1) exists unique turning point $x_t > 0$, or

(2) the wave decays rather than propagates. This will be true for low frequencies ω .

Turning points x_t are where $2\omega G(x_t) = n\pi$. If G' < 0 with $G(\infty) = 0$, then either

(1) exists unique turning point $x_t > 0$, or

(2) the wave decays rather than propagates. This will be true for low frequencies ω .

With $X = (x - x_t)/\epsilon^{2/3}$, transition solution is

$$u\sim \mathsf{aAi}(\kappa^{1/3}X)+b\mathsf{Bi}(\kappa^{1/3}X), \quad \kappa=-2\omega^2(\mathcal{G}'/\mathcal{G})|_{x=x_t}.$$

If solution to left of turning point is

$$u \sim \frac{a}{\sqrt{\theta_x G(x)}} \left[a_L \exp(i[\omega t + \theta(x)/\epsilon] + b_L \exp(i[\omega t - \theta(x)/\epsilon])) \sin[\lambda_n(y+G)] \right].$$

and to right is

$$u \sim rac{a_R}{\sqrt{| heta_x|G(x)}} \exp(i\omega t - heta(x)/\epsilon])\sin[\lambda_n(y+G)],$$

connection formulas imply $a_R = e^{-i\pi/4}a_L$, $b_L = -ia_L$

Rays in wave propagation

Consider the three dimensional wave equation

$$\mu^2(x)u_{tt} = \Delta u, \quad x \in \mathbb{R}^3.$$

where $\mu(x)$ is the index of refraction.

Consider the three dimensional wave equation

$$\mu^2(x)u_{tt}=\Delta u, \quad x\in\mathbb{R}^3.$$

where $\mu(x)$ is the index of refraction. Separate variables $u = e^{-i\omega t}v(x)$ giving the Helmholtz equation

$$\Delta v + \omega^2 \mu^2(x) v = 0.$$

Consider the three dimensional wave equation

$$\mu^2(x)u_{tt} = \Delta u, \quad x \in \mathbb{R}^3.$$

where $\mu(x)$ is the index of refraction. Separate variables $u = e^{-i\omega t}v(x)$ giving the Helmholtz equation

$$\Delta v + \omega^2 \mu^2(x) v = 0$$

For large frequencies $\omega \gg 1,$ try WKB expansion

$$\mathbf{v} = \mathbf{e}^{i\omega\theta(\mathbf{x})}[\mathbf{v}_0(\mathbf{x}) + \frac{1}{\omega}\mathbf{v}_1 + \ldots],$$

leading to

$$ert
abla heta ert^2 = \mu^2(x), \quad (\mathsf{Eikonal}),$$

 $2 \nabla heta \cdot \nabla v_0 + (\Delta heta) \cdot v_0 = 0, \quad (\mathsf{Transport equation})$

The eikonal equation

The equation $|\nabla \theta|^2 = \mu^2(x)$ is nonlinear and hyperbolic, and is generally solved with numerical techniques. The solution has a natural geometric characterization, however. Suppose $\theta = 0$ on some surface Γ . Then

$$heta(x) = \operatorname{dist}(x, \Gamma), \quad \operatorname{dist}(x, x') = \min_{\gamma} \int_{0}^{1} \mu(\gamma(s)) \gamma'(s) ds$$

where $\gamma(s)$ is a parameterized curve so that $\gamma(0) = x$ and $\gamma(1) = x'$.

The eikonal equation

The equation $|\nabla \theta|^2 = \mu^2(x)$ is nonlinear and hyperbolic, and is generally solved with numerical techniques. The solution has a natural geometric characterization, however. Suppose $\theta = 0$ on some surface Γ . Then

$$heta(x) = \operatorname{dist}(x, \Gamma), \quad \operatorname{dist}(x, x') = \min_{\gamma} \int_{0}^{1} \mu(\gamma(s)) \gamma'(s) ds$$

where $\gamma(s)$ is a parameterized curve so that $\gamma(0) = x$ and $\gamma(1) = x'$.

- The integral is simply the time along the curve γ. The minimizing property is Fermat's principle.
- The minimizing curves are characteristics, so that $\gamma'(s) = \nabla \theta(s)$.
- The transport equation is solved along characteristics,

$$rac{d m{v}_0}{d m{s}}(\gamma(m{s})) =
abla heta \cdot
abla m{v}_0 = -rac{1}{2} \Delta heta(\gamma(m{s})) m{v}_0.$$

Thus if characteristics spread out, $\nabla \cdot (\gamma') = \Delta \theta > 0$ and amplitude shrinks to conserve total power.

Example

Take $\mu = 1$, and suppose u = 1 on spherical surface with radius $\rho = \rho_0$. Characteristics are straight lines $x = \gamma(s) = (s + \rho_0)d$ where d is unit direction vector of x.

Example

Take $\mu = 1$, and suppose u = 1 on spherical surface with radius $\rho = \rho_0$. Characteristics are straight lines $x = \gamma(s) = (s + \rho_0)d$ where d is unit direction vector of x.

One has $\theta = 0$ and $v_0 = 1$ when $\rho = \rho_0$ or s = 0. The radial Laplacian is $\Delta \theta = 2/\rho = 2/(s + \rho_0)$, and therefore transport along characteristic satisfies

$$rac{d extsf{v}_0}{d s}(\gamma(s)) = -rac{1}{2} \Delta heta(\gamma(s)) extsf{v}_0 = -rac{ extsf{v}_0}{s+
ho_0}$$

This equation integrates to $v_0 = \rho_0/\rho$, i.e. intensity drops off as the square of distance.