## Asymptotic Methods

WKB methods: Wave propagation and ray methods

## Wave propagation through a slender domain

Consider

$$
\epsilon^{2} u_{x x}+u_{y y}=u_{t t}, \quad 0<x<\infty, \quad-G(x)<y<G(x)
$$

with $u(x, \pm G(x), t)=0$ and $u(0, y, t)=f(y) \cos (\omega t)$.


Questions: how does the wave propagate as domain narrows? Does is stop propagating all the way to $\infty$ ?

## Wave propagation through a slender domain

Consider

$$
\epsilon^{2} u_{x x}+u_{y y}=u_{t t}, \quad 0<x<\infty, \quad-G(x)<y<G(x)
$$

with $u(x, \pm G(x), t)=0$ and $u(0, y, t)=f(y) \cos (\omega t)$.


Questions: how does the wave propagate as domain narrows? Does is stop propagating all the way to $\infty$ ?

WKB approximation

$$
u \sim \exp (i(\omega t-\theta(x)) / \epsilon)\left[u_{0}(x, y)+\epsilon u_{1}(x, y)+\ldots\right]
$$

leads to

$$
-\theta_{x}^{2}-i \epsilon\left(\theta_{x x} u_{0}+2 \theta_{x} u_{0 x}+\ldots\right)+u_{0 y y}+\epsilon u_{1 y y}+\ldots=-\omega^{2}\left(u_{0}+\epsilon u_{1}+\ldots\right)
$$

## Wave propagation through a slender body, cont.

Leading order problem is

$$
u_{0 y y}+\left(\omega^{2}-\theta_{x}^{2}\right) u_{0}=0, \quad u_{0}(x, \pm G(x))=0
$$

This is an eigenvalue problem (in the $y$ variable), whose solutions are

$$
u_{0}(x, y)=A(x) \sin [\lambda(y+G)]
$$

where by boundary condition, $2 \lambda G=n \pi, n=1,2,3, \ldots$. Therefore

$$
\theta_{x}= \pm \sqrt{\omega^{2}-\lambda_{n}^{2}}
$$

Note higher modes $\lambda_{n}>\omega$ decay rather than propagate.

## Wave propagation through a slender body, cont.

Leading order problem is

$$
u_{0 y y}+\left(\omega^{2}-\theta_{x}^{2}\right) u_{0}=0, \quad u_{0}(x, \pm G(x))=0
$$

This is an eigenvalue problem (in the $y$ variable), whose solutions are

$$
u_{0}(x, y)=A(x) \sin [\lambda(y+G)]
$$

where by boundary condition, $2 \lambda G=n \pi, n=1,2,3, \ldots$. Therefore

$$
\theta_{x}= \pm \sqrt{\omega^{2}-\lambda_{n}^{2}}
$$

Note higher modes $\lambda_{n}>\omega$ decay rather than propagate.
Next order is

$$
u_{1 y y}+\lambda_{n}^{2} u_{1}=i\left(\theta_{x x} u_{0}+2 \theta_{x} u_{0 x}\right), \quad u_{1}(x, \pm G(x), t)=0
$$

Fredholm solvability implies

$$
0=\int_{-G(x)}^{G(x)} u_{0}\left(\theta_{x x} u_{0}+2 \theta_{x} u_{0 x}\right) d y=\frac{d}{d x} \int_{-G(x)}^{G(x)}\left(\theta_{x} u_{0}^{2}\right) d y
$$

so that $\theta_{x} \int_{-G}^{G} u_{0}^{2} d y=a$ and $A(x)=a / \sqrt{\theta_{x} G(x)}$, and solution is superposition of

$$
u \sim \frac{a}{\sqrt{\theta_{x} G(x)}} \exp (i[\omega t \pm \theta(x) / \epsilon]) \sin \left[\lambda_{n}(y+G)\right]
$$

## Wave propagation through a slender body, turning point problem

Turning points $x_{t}$ are where $2 \omega G\left(x_{t}\right)=n \pi$. If $G^{\prime}<0$ with $G(\infty)=0$, then either
(1) exists unique turning point $x_{t}>0$, or
(2) the wave decays rather than propagates. This will be true for low frequencies $\omega$.

## Wave propagation through a slender body, turning point problem

Turning points $x_{t}$ are where $2 \omega G\left(x_{t}\right)=n \pi$. If $G^{\prime}<0$ with $G(\infty)=0$, then either
(1) exists unique turning point $x_{t}>0$, or
(2) the wave decays rather than propagates. This will be true for low frequencies $\omega$.

With $X=\left(x-x_{t}\right) / \epsilon^{2 / 3}$, transition solution is

$$
u \sim a \operatorname{Ai}\left(\kappa^{1 / 3} X\right)+b \operatorname{Bi}\left(\kappa^{1 / 3} X\right), \quad \kappa=-\left.2 \omega^{2}\left(G^{\prime} / G\right)\right|_{x=x_{t}}
$$

If solution to left of turning point is

$$
u \sim \frac{a}{\sqrt{\theta_{x} G(x)}}\left[a_{L} \exp \left(i[\omega t+\theta(x) / \epsilon]+b_{L} \exp (i[\omega t-\theta(x) / \epsilon])\right]\right) \sin \left[\lambda_{n}(y+G)\right]
$$

and to right is

$$
\left.u \sim \frac{a_{R}}{\sqrt{\left|\theta_{x}\right| G(x)}} \exp (i \omega t-\theta(x) / \epsilon]\right) \sin \left[\lambda_{n}(y+G)\right]
$$

connection formulas imply $a_{R}=e^{-i \pi / 4} a_{L}, b_{L}=-i a_{L}$

## Rays in wave propagation

Consider the three dimensional wave equation

$$
\mu^{2}(x) u_{t t}=\Delta u, \quad x \in \mathbb{R}^{3}
$$

where $\mu(x)$ is the index of refraction.

## Rays in wave propagation

Consider the three dimensional wave equation

$$
\mu^{2}(x) u_{t t}=\Delta u, \quad x \in \mathbb{R}^{3}
$$

where $\mu(x)$ is the index of refraction. Separate variables $u=e^{-i \omega t} v(x)$ giving the Helmholtz equation

$$
\Delta v+\omega^{2} \mu^{2}(x) v=0
$$

## Rays in wave propagation

Consider the three dimensional wave equation

$$
\mu^{2}(x) u_{t t}=\Delta u, \quad x \in \mathbb{R}^{3}
$$

where $\mu(x)$ is the index of refraction. Separate variables $u=e^{-i \omega t} v(x)$ giving the Helmholtz equation

$$
\Delta v+\omega^{2} \mu^{2}(x) v=0
$$

For large frequencies $\omega \gg 1$, try WKB expansion

$$
v=e^{i \omega \theta(x)}\left[v_{0}(x)+\frac{1}{\omega} v_{1}+\ldots\right]
$$

leading to

$$
\begin{aligned}
|\nabla \theta|^{2} & =\mu^{2}(x), \quad(\text { Eikonal }) \\
2 \nabla \theta \cdot \nabla v_{0}+(\Delta \theta) \cdot v_{0} & =0, \quad(\text { Transport equation })
\end{aligned}
$$

The eikonal equation
The equation $|\nabla \theta|^{2}=\mu^{2}(x)$ is nonlinear and hyperbolic, and is generally solved with numerical techniques. The solution has a natural geometric characterization, however. Suppose $\theta=0$ on some surface $\Gamma$. Then

$$
\theta(x)=\operatorname{dist}(x, \Gamma), \quad \operatorname{dist}\left(x, x^{\prime}\right)=\min _{\gamma} \int_{0}^{1} \mu(\gamma(s)) \gamma^{\prime}(s) d s
$$

where $\gamma(s)$ is a parameterized curve so that $\gamma(0)=x$ and $\gamma(1)=x^{\prime}$.


## The eikonal equation

The equation $|\nabla \theta|^{2}=\mu^{2}(x)$ is nonlinear and hyperbolic, and is generally solved with numerical techniques. The solution has a natural geometric characterization, however. Suppose $\theta=0$ on some surface $\Gamma$. Then

$$
\theta(x)=\operatorname{dist}(x, \Gamma), \quad \operatorname{dist}\left(x, x^{\prime}\right)=\min _{\gamma} \int_{0}^{1} \mu(\gamma(s)) \gamma^{\prime}(s) d s
$$

where $\gamma(s)$ is a parameterized curve so that $\gamma(0)=x$ and $\gamma(1)=x^{\prime}$.


- The integral is simply the time along the curve $\gamma$. The minimizing property is Fermat's principle.
- The minimizing curves are characteristics, so that $\gamma^{\prime}(s)=\nabla \theta(s)$.
- The transport equation is solved along characteristics,

$$
\frac{d v_{0}}{d s}(\gamma(s))=\nabla \theta \cdot \nabla v_{0}=-\frac{1}{2} \Delta \theta(\gamma(s)) v_{0}
$$

Thus if characteristics spread out, $\nabla \cdot\left(\gamma^{\prime}\right)=\Delta \theta>0$ and amplitude shrinks to conserve total power.

## Example

Take $\mu=1$, and suppose $u=1$ on spherical surface with radius $\rho=\rho_{0}$. Characteristics are straight lines $x=\gamma(s)=\left(s+\rho_{0}\right) d$ where $d$ is unit direction vector of $x$.


## Example

Take $\mu=1$, and suppose $u=1$ on spherical surface with radius $\rho=\rho_{0}$.
Characteristics are straight lines $x=\gamma(s)=\left(s+\rho_{0}\right) d$ where $d$ is unit direction vector of $x$.


One has $\theta=0$ and $v_{0}=1$ when $\rho=\rho_{0}$ or $s=0$. The radial Laplacian is $\Delta \theta=2 / \rho=2 /\left(s+\rho_{0}\right)$, and therefore transport along characteristic satisfies

$$
\frac{d v_{0}}{d s}(\gamma(s))=-\frac{1}{2} \Delta \theta(\gamma(s)) v_{0}=-\frac{v_{0}}{s+\rho_{0}} .
$$

This equation integrates to $v_{0}=\rho_{0} / \rho$, i.e. intensity drops off as the square of distance.

