
Asymptotic Methods

WKB methods: Wave propagation and ray methods



Wave propagation through a slender domain

Consider

ε2uxx + uyy = utt , 0 < x <∞, −G(x) < y < G(x).

with u(x ,±G(x), t) = 0 and u(0, y , t) = f (y) cos(ωt).

Questions: how does the wave propagate as domain narrows? Does is stop
propagating all the way to ∞?

WKB approximation

u ∼ exp(i(ωt − θ(x))/ε)[u0(x , y) + εu1(x , y) + . . .]

leads to

−θ2x − iε(θxxu0 + 2θxu0x + . . .) + u0yy + εu1yy + . . . = −ω2(u0 + εu1 + . . .)



Wave propagation through a slender domain

Consider

ε2uxx + uyy = utt , 0 < x <∞, −G(x) < y < G(x).

with u(x ,±G(x), t) = 0 and u(0, y , t) = f (y) cos(ωt).

Questions: how does the wave propagate as domain narrows? Does is stop
propagating all the way to ∞?

WKB approximation

u ∼ exp(i(ωt − θ(x))/ε)[u0(x , y) + εu1(x , y) + . . .]

leads to

−θ2x − iε(θxxu0 + 2θxu0x + . . .) + u0yy + εu1yy + . . . = −ω2(u0 + εu1 + . . .)



Wave propagation through a slender body, cont.

Leading order problem is

u0yy + (ω2 − θ2x)u0 = 0, u0(x ,±G(x)) = 0.

This is an eigenvalue problem (in the y variable), whose solutions are

u0(x , y) = A(x) sin[λ(y + G)]

where by boundary condition, 2λG = nπ, n = 1, 2, 3, . . .. Therefore

θx = ±
√
ω2 − λ2

n.

Note higher modes λn > ω decay rather than propagate.

Next order is

u1yy + λ2
nu1 = i(θxxu0 + 2θxu0x), u1(x ,±G(x), t) = 0.

Fredholm solvability implies

0 =

∫ G(x)

−G(x)

u0(θxxu0 + 2θxu0x)dy =
d

dx

∫ G(x)

−G(x)

(θxu
2
0)dy ,

so that θx
∫ G

−G
u2
0dy = a and A(x) = a/

√
θxG(x), and solution is superposition

of
u ∼ a√

θxG(x)
exp(i [ωt ± θ(x)/ε]) sin[λn(y + G)].
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Wave propagation through a slender body, turning point problem

Turning points xt are where 2ωG(xt) = nπ. If G ′ < 0 with G(∞) = 0, then
either
(1) exists unique turning point xt > 0, or
(2) the wave decays rather than propagates. This will be true for low
frequencies ω.

With X = (x − xt)/ε
2/3, transition solution is

u ∼ aAi(κ1/3X ) + bBi(κ1/3X ), κ = −2ω2(G ′/G)|x=xt .

If solution to left of turning point is

u ∼ a√
θxG(x)

[aL exp(i [ωt + θ(x)/ε] + bL exp(i [ωt − θ(x)/ε])]) sin[λn(y + G)].

and to right is

u ∼ aR√
|θx |G(x)

exp(iωt − θ(x)/ε]) sin[λn(y + G)],

connection formulas imply aR = e−iπ/4aL, bL = −iaL
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Rays in wave propagation

Consider the three dimensional wave equation

µ2(x)utt = ∆u, x ∈ R3.

where µ(x) is the index of refraction.

Separate variables u = e−iωtv(x) giving
the Helmholtz equation

∆v + ω2µ2(x)v = 0.

For large frequencies ω � 1, try WKB expansion

v = e iωθ(x)[v0(x) +
1

ω
v1 + . . .],

leading to

|∇θ|2 = µ2(x), (Eikonal),

2∇θ · ∇v0 + (∆θ) · v0 = 0, (Transport equation)
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The eikonal equation

The equation |∇θ|2 = µ2(x) is nonlinear and hyperbolic, and is generally solved
with numerical techniques. The solution has a natural geometric
characterization, however. Suppose θ = 0 on some surface Γ. Then

θ(x) = dist(x , Γ), dist(x , x ′) = min
γ

∫ 1

0

µ(γ(s))γ′(s)ds

where γ(s) is a parameterized curve so that γ(0) = x and γ(1) = x ′.

The integral is simply the time along the curve γ. The minimizing
property is Fermat’s principle.

The minimizing curves are characteristics, so that γ′(s) = ∇θ(s).

The transport equation is solved along characteristics,

dv0
ds

(γ(s)) = ∇θ · ∇v0 = −1

2
∆θ(γ(s))v0.

Thus if characteristics spread out, ∇·(γ′) = ∆θ > 0 and amplitude
shrinks to conserve total power.
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Example

Take µ = 1, and suppose u = 1 on spherical surface with radius ρ = ρ0.
Characteristics are straight lines x = γ(s) = (s + ρ0)d where d is unit direction
vector of x .

One has θ = 0 and v0 = 1 when ρ = ρ0 or s = 0. The radial Laplacian is
∆θ = 2/ρ = 2/(s + ρ0), and therefore transport along characteristic satisfies

dv0
ds

(γ(s)) = −1

2
∆θ(γ(s))v0 = − v0

s + ρ0
.

This equation integrates to v0 = ρ0/ρ, i.e. intensity drops off as the square of
distance.
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