Asymptotic Methods

WKB methods: Wave propagation and ray methods



Wave propagation through a slender domain

Consider
Ezuxx+uyy:utt, 0<X<OO, 7G(X) <y< G(X)

with u(x,£G(x),t) =0 and u(0,y,t) = f(y) cos(wt).
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Questions: how does the wave propagate as domain narrows? Does is stop
propagating all the way to co?
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WKB approximation
u ~ exp(i(wt — 0(x))/€)[uo(x,y) + eur(x,¥) +...]
leads to

—02 — ie(Oxtio + 20xtiox + .. .) + Uoyy + €ty + ... = —w(uo + eur +...)



Wave propagation through a slender body, cont.

Leading order problem is
toyy + (W — 02)uo =0,  wo(x,+£G(x)) = 0.
This is an eigenvalue problem (in the y variable), whose solutions are
uo(x, y) = A(x) sin[A(y + G)]
where by boundary condition, 2\G = nw, n=1,2,3,.... Therefore
O = £V/w? — X3

Note higher modes A, > w decay rather than propagate.



Wave propagation through a slender body, cont.

Leading order problem is
toyy + (W — 02)uo =0,  wo(x,+£G(x)) = 0.
This is an eigenvalue problem (in the y variable), whose solutions are
uo(x,y) = A(x) sin[A(y + G)]
where by boundary condition, 2\G = nw, n=1,2,3,.... Therefore
O = £V/w? — X3

Note higher modes A, > w decay rather than propagate.
Next order is

Uty + )\f,ul = i(Oxcto + 205u0x), uw1(x,£G(x),t) =0.

Fredholm solvability implies

G(x) d G(x) 5
0= / uo (B io + 260 uox)dy = — (6xup)dy,
)

—G(x) dx —G(x
so that 6, ffG uddy = a and A(x) = a//6xG(x), and solution is superposition

of
exp(i{wt £ 6(x)/€]) sin[An(y + G)].
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Wave propagation through a slender body, turning point problem

Turning points x; are where 2wG(x;) = nm. If G’ < 0 with G(o0) = 0, then
either
(1) exists unique turning point x; > 0, or

(2) the wave decays rather than propagates. This will be true for low
frequencies w.



Wave propagation through a slender body, turning point problem

Turning points x; are where 2wG(x;) = nm. If G’ < 0 with G(o0) = 0, then
either

(1) exists unique turning point x; > 0, or
(2) the wave decays rather than propagates. This will be true for low
frequencies w.

With X = (x — x;)/€%/3, transition solution is
u~ ahi(k2X) 4+ bBi(k3X), k= —2w*(G"/G)|xor,-

If solution to left of turning point is

U~ ——2 [a exp(i[wt + 0(x)/e] + by exp(i[wt — 0(x)/€])]) sin[An(y + G)].

V/0xG(x)

and to right is

exp(iwt — 0(x)/€]) sin[An(y + G)],

ar
V10x|G(x)

connection formulas imply ag = e im/4

aL, by = —iag



Rays in wave propagation

Consider the three dimensional wave equation
2 _ 3
uw(X)uw = Au, xR’

where pi(x) is the index of refraction.
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the Helmholtz equation
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Consider the three dimensional wave equation
2 _ 3
uw(X)uw = Au, xR’

where p(x) is the index of refraction. Separate variables u = e ™'v(x) giving
the Helmholtz equation
Av + WP (x)v = 0.

For large frequencies w > 1, try WKB expansion
iwb(x) 1
v=e [Vo(X)+aV1+‘--],

leading to

|VO* = 1i°(x), (Eikonal),
2V0 - Vv + (AB) - vo =0, (Transport equation)



The eikonal equation

The equation |V6|? = p?(x) is nonlinear and hyperbolic, and is generally solved
with numerical techniques. The solution has a natural geometric
characterization, however. Suppose 8 = 0 on some surface I'. Then

1
0(x) = dist(x,T), dist(x,x") = min/ w(v(s))y (s)ds
7 Jo
where y(s) is a parameterized curve so that y(0) = x and (1) = x'.
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The equation |V6|? = p?(x) is nonlinear and hyperbolic, and is generally solved
with numerical techniques. The solution has a natural geometric
characterization, however. Suppose 8 = 0 on some surface I'. Then

0(x) = dist(x,T), dist(x,x") = m’yin/O w(v(s))y (s)ds

where ~(s) is a parameterized curve so that v(0) = x and (1) = x'.
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m The integral is simply the time along the curve . The minimizing
property is Fermat's principle.
m The minimizing curves are characteristics, so that +'(s) = V0(s).
m The transport equation is solved along characteristics,
dvo
ds
Thus if characteristics spread out, V-(7') = A8 > 0 and amplitude
shrinks to conserve total power.

(1(s)) = VO - Vvo = —%AH(V(S))VO.



Take p =1, and suppose u = 1 on spherical surface with radius p = po.
Characteristics are straight lines x = v(s) = (s + po)d where d is unit direction
vector of x.
—’7
% (s) = (e.as7 3\
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One has # = 0 and vy = 1 when p = pg or s = 0. The radial Laplacian is
AO =2/p=2/(s+ po), and therefore transport along characteristic satisfies

I ((5)) = 2 B0 () = -

Vo
s+po

This equation integrates to vo = po/p, i.e. intensity drops off as the square of
distance.



