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Abstract

This paper discusses localized equilibria which arise in copolymer-solvent mixtures. A free
boundary problem associated with the sharp-interface limit of a density functional model is used
to identify both lamellar and concentric domain patterns composed of a finite number of layers.
Stability of these morphologies is studied through explicit linearization of the free boundary
evolution.

For the multilayered lamellar configuration, transverse instability is observed for sufficiently
small dimensionless interfacial energies. Additionally, a crossover between small and large wave-
length instabilities is observed depending on whether solvent-polymer or monomer-monomer
interfacial energy is dominant.

Concentric domain patterns resembling multilayered micelles and vesicles exhibit bifurcations
wherein they only exist for sufficiently small dimensionless interfacial energies. The bifurcation
of large radii vesicle solutions is studied analytically, and a crossover from a supercritical case
with only one solution branch to a subcritical case with two is observed. Linearized stability of
these configurations shows that azimuthal perturbation may lead to instabilities as interfacial
energy is decreased.

Introduction

Block copolymers are molecularly bonded mixtures of two or more distinct polymer species, which
may exhibit microphase segregation, wherein small domains of heterogeneous composition form.
In the presence of a partially immiscible third phase, the mixture may also undergo macrophase
segregation. The combined effect of both types of phase segregation leads to a wide variety of
morphologies [1, 2, 3, 4, 5, 6].

Many of the basic patterns which form in these systems can be described as equilibria composed
of alternating layers of polymer composition, surrounded by a solvent phase [7, 8, 3, 6]. In this paper,
we study three morphological classes, shown in figure 1. The first of these are flat structures with
many layers, referred to here as lamellar multilayers. These can be regarded as the multidimensional
extension of one dimensional equilibria. In addition, there are two concentric equilibria types, which
in analogy to amphiphilic chemical systems will be referred to as micelles and vesicles. The latter
type has a solvent core, whereas the former does not.

This paper studies a dynamic free boundary problem which arises as the sharp interface limit
of a density functional model. Density functional approaches have a long history in modelling
heterogeneous polymer mixtures (e.g. [9, 10, 11]), and are a natural extension of the Cahn-Hilliard
theory of phase separation [12]. The particular formulation we begin with was considered by Ohta
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Figure 1: The three types of configurations studied in this paper. The number of alternating
polymer domains N can be any integer ≥ 2.

and Ito [3]. The corresponding free boundary problem may be regarded as an extension of both
the classic Mullins-Sekerka problem (e.g.[13]) and the two-phase free boundary evolution for block
copolymers formulated by Nishiura and Ohnishi [14].

Localized multilayered block copolymer morphologies have been actively studied in recent years
[15, 16, 17, 18, 19, 20]. Ohta and Nonomura [17] performed numerical studies of the density func-
tional model used here and computed approximations to free energies of flat and concentric equilib-
ria. Lamellar equilibria in a sharp interface model of copolymer-homopolymer blends were studied
by van Gennip and Peletier [19, 20]. They rigorously establish the existence of mass-conserving
energy minimizers and study stability through the second variation of the energy functional.

Concentric equilibria in block copolymer mixtures have also been studied previously. Ren and
Wei [16] rigorously established the existence of radially symmetric patterns in a two phase model.
More recently, Avalos et al. [21] studied a density functional model similar to the one discussed
here. They numerically compute a variety of equilibria, including concentric micelle-type patterns.
In addition, they compare their results to experimental observations of similar structures (e.g. [22]).

The starting point for our analysis is a dynamic free boundary problem which represents a
singular limit of a density functional model. Some aspects of this model and its derivation are
discussed in section 1. In section 2, the equilibrium lamellar multilayer morphology is studied.
Analytic evidence is presented for large wavelength transverse instabilities. Stability with respect
to arbitrary wavenumber perturbations is also studied by formulating a finite dimensional eigenvalue
problem. Concentric equilibria are discussed in section 3. A hybrid analytical-numerical shooting
method is used to compute equilibria and locate their bifurcations. For the micelle case, two solution
branches merge in a fold bifurcation, whereas in the vesicle case the branch of large radii solutions
can be analytically shown to emerge from lamellar multilayer equilibria. Azimuthal stability of
concentric equilibria is studied by formulating an eigenvalue problem analogous to the lamellar
case.

1 Density functional models and their sharp interface limit

Density functional models for block copolymer mixtures construct a free energy as a function of
composition variables, here φA, φB, and φS , corresponding to copolymer constituents A and B, and
a solvent phase S. One of these variables can be eliminated by invoking the standard assumption
of incompressibility φA + φB + φS = 1, which leads to a convenient reformulation [17] employing
the variables

Φ = (1− f)φA − fφB, Ψ = fφA + (1− f)φB. (1)
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The parameter f ∈ (0, 1) is the fraction of A-monomer relative to the total polymer volume. It is
assumed that these are finite, and it follows that∫

Rd

Φ dx = 0. (2)

The resulting free energy functional can be written (in suitable dimensionless variables)

F =

∫
Rd

1

ε
W (Φ,Ψ) +

ε

2
|∇Φ|2 +

ε

2
|∇Ψ|2dx+

α

2

∫
Rd

∫
Rd

G(x, x′)Φ(x)Φ(x′) dx dx′. (3)

The nonlocal term has an interaction kernel G(), which is taken to be the Laplacian Green’s function
here. The potential W (Φ,Ψ) has minima at (Φ,Ψ) = (0, 0), corresponding to pure solvent, and
(Φ,Ψ) = (1−f, f) and (−f, 1−f), corresponding to pure A or B monomer, respectively. Dynamics
are built from the assumption that diffusion is driven by gradients of the generalized chemical
potentials µ = δF/δΦ, ν = δF/δΨ, leading to

εΦt = ∆µ− εαΦ, µ ≡ −ε2∆Φ +WΦ(Φ,Ψ) (4)

εΨt = ∆ν, ν ≡ −ε2∆Ψ +WΨ(Φ,Ψ). (5)

While more general diffusive dynamics are possible, our primary interest is in linear stability, which
is a function of energy and not kinetics.

1.1 Free boundary problem

The singular limit ε → 0 may be obtained by matched asymptotic expansions in the usual way
(e.g. [13, 14, 23]). Some details are provided in the appendix for completeness. The result is a
free boundary problem which describes the evolution of interfaces between three (open) domains
ΩA,ΩB,ΩS , which correspond to the three minima of W , (Φ0,Ψ0) = (0, 0), (1−f, f) and (−f, 1−f),
respectively. By virtue of (2), these subregions satisfy

|ΩA|
f

= |ΩA ∪ ΩB| =
|ΩB|
1− f

. (6)

The normal interface velocities Vn are prescribed by the system

∆v =


0, x ∈ ΩS

1− f, x ∈ ΩA

−f, x ∈ ΩB

(7)

∆w = 0, x ∈ ΩS ∪ ΩA ∪ ΩB, (8)

v [Φ0]+− + w [Ψ0]+− = −κσpq, x ∈ ∂Ωpq, p, q ∈ {A,B, S}, (9)

[v]+− = 0 = [w]+− , (10)

Vn = − [∂v/∂n]+− / [Φ0]+− = − [∂w/∂n]+− / [Ψ0]+− . (11)

The notation []+− refers to the jump of values across the interface. By convention, the normal to the
interface will be oriented in the arbitrarily prescribed + direction, so that the interface curvature
κ is positive if the phase corresponding to − is locally convex. In some cases, [Ψ0]+− = 0, and the

last equality in (11) is replaced with [∂w/∂n]+− = 0.
The field variables v and w are the sharp interface, nondimensional versions of chemical poten-

tials µ and ν defined in (4-5). As in the classical Cahn-Hilliard theory, the interface motion (11)
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arises from a discontinuity of diffusive fluxes which derive from gradients of chemical potentials.
Notice that there are two expressions for interface velocity, which seems to make the system over-
determined. On the other hand, the curvature boundary condition (9) and the continuity boundary
conditions (10) are not linearly independent. As a consequence, there is an extra degree of freedom
in solving the elliptic equations (7) and (8) which is removed by the self-consistency of the two
velocity expressions in (11).

The system (7-11) has been written in dimensionless variables. The nondimensional surface
energy parameters

σpq = Σpqν
−3/2
∞ α1/2, p, q ∈ {A,B, S}, (12)

will play a significant role in both bifurcation and stability. Here Σpq refers to the dimensional
surface energy of the Ωp-Ωq interface, and ν∞ is a prescribed characteristic chemical potential. We
shall later impose far field conditions which specify ν∞.

In addition to the free boundary equations above, one expects a Herring-type formula at three
phase junctions [23]. The configurations we study have no such interface junctions, however, and
these conditions may be ignored.

1.2 Far field conditions

The primary interest of this paper is the study of localized configurations which are in equilibrium
with their environment, which is taken to be a homogeneous mixture of solvent and polymer. In
the continuum equations, these lead to

lim
|x|→∞

µ = 0, lim
|x|→∞

ν = εν∞. (13)

The first encodes the fact that far from the localized domains of interest, there is a perfectly
homogeneous mixture and no preponderance of A or B phases. The second condition provides an
ambient chemical potential, equivalent to specifying the dilute volume fraction of polymer in the
far field.

The dynamic free boundary problem (7-11) does not capture the diffusive behavior of either
Φ or Ψ far away. As explained in the appendix, there is necessarily a slowly varying “diffusion”
layer using the stretched coordinate X = ε1/2x, valid for X � ε−1/2. Our interest here, however,
is studying the stability of domain structures subject only to localized perturbations. This allows
us to ignore dynamics in the diffusion layer, and use the effective far field conditions

∇v = O(r−d) = ∇w, |x| → ∞, (14)

which prevents flux to and from infinity (see also the discussion in section 4). For the equilibrium
problem, on the other hand, there is no diffusion layer for ν, and the scaled free boundary problem
satisfies

lim
|x|→∞

w = 1. (15)

For the lamellar structures considered in section (2), the limits in (14,15) only pertain to the first
independent variable (i.e. x rather than y or z).

1.3 Volume conservation and energy dissipation

The free boundary problem (7-11) has two useful properties which provide some intuition about
the interface evolution. The first is that volume |ΩA ∪ ΩB| of the polymer domains is conserved
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provided (14) is invoked. This is seen by first noting that (6) implies∫
Rd

Ψ0 dx =
(
f2 + (1− f)2

)
|ΩA ∪ ΩB|. (16)

Then conservation of the integral of Ψ0 follows by

d

dt

∫
Rd

Ψ0 dx =

∫
I
[Ψ0]+−Vn dx =

∫
I
[∂w/∂n]+− dx = 0, (17)

where I refers to the collection of all interfaces. The final equality is a result of cancellation on
shared interfaces, as well as the divergence theorem applied to the far field region.

The sharp interface version of energy (3) can written as the sum E = Ep +Es, where Ep is the
energy of polymer stretching

Ep =
1

2

∫
Rd

|∇u|2 dx, ∆u = Φ0, lim
x→∞

u = 0, (18)

and Es is the total surface energy

Es =
∑

p,q∈{A,B,S}

σpq|∂Ωpq|. (19)

One may regard E = E(ΩA,ΩB) as a functional over a class of admissible states, which may be
characterized as a pair of bounded, open domains ΩA,B ⊂ Rn with smooth boundaries which satisfy
the volume fraction constraint |ΩA|/|ΩB| = f/(1 − f). For lamellar configurations, ΩA,B should
instead be regarded as subsets of a semi-infinite domain with cylindrical topology, i.e. a domain
which is periodic in the longitudinal direction so that energy is finite.

It can be shown that the total energy is dissipated under the dynamics given by (7-11). A
standard computation gives

dE

dt
=

∫
I

(
u[Φ0]+− + σκ

)
Vn dx (20)

where σ = σpq is the surface energy on the pq-component of I. Introducing J ≡ u−v, the dissipation
of energy is therefore

dE

dt
=

∫
I

(
J − w[Ψ0]+−/[Φ0]+−

)
[∂v/∂n]+− dx (21)

=

∫
Rd

∇v · ∇J + J∆v dx−
∫
I
w[∂w/∂n]+− dx (22)

=

∫
Rd

∇(u− J) · ∇J + J∆u− |∇w|2 dx (23)

= −
∫
Rd

|∇J |2 + |∇w|2 dx. (24)

(25)

Here the first line uses (9), the second line uses the second equality in (11), and Green’s identity is
used throughout.
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2 Lamellar multilayered equilibria

We begin by considering the simplest morphology, one dimensional states composed of alternating
blocks of the form S|A|B| . . . |A|S or S|A|B . . . |B|S. The existence of these types of steady states
and their stability was studied in a somewhat more general model in [20]. The present model is a
limiting case (essentially for small ν∞) of that formulation.

One dimensional equilibria can also be regarded as multidimensional equilibria. Here the lin-
earized growth rates associated with longitudinal perturbations are computed. We find that for suf-
ficiently large surface energies, multilayered configurations are stable for all longitudinal wavenum-
bers.

2.1 Equilibrium in one dimension

For the system domain x ∈ R, the field equations (7,8) can be integrated explicitly to give a unique
solution with interfaces at x0, x1, ..., xN , where subintervals (xj , xj+1) represent domains ΩA and
ΩB for j even or odd, respectively. This solution can be written in a compact manner by defining
the domain widths (or half widths) by

l0 = x1 − x0, lN−1 = xN − xN+1, lj = (xj+1 − xj)/2, 1 ≤ j ≤ N − 2, (26)

where it is found that

lj =


√

4f2−4f+2
1−f j even√

4f2−4f+2
f j odd

(27)

By setting

x̄0 = x0, x̄N−1 = xN , x̄j = (xj+1 + xj)/2, 1 ≤ j ≤ N − 2, (28)

the field variables are found to be w ≡ 1 and

v = v0(x) ≡

{
1−f

2 (x− x̄j)2 − f
1−f , xj < x < xj+1 j even,

−f
2 (x− x̄j)2 + 1−f

f , xj < x < xj+1 j odd.
(29)

Before proceeding to discuss stability in multiple dimensions, we make a few comments about
the one dimensional stability of this equilibrium. By virtue of the conservation and dissipation
properties, our equilibrium may be regarded as a critical point of the energy E = Ep(x0, x1, . . . , xN )
subject to the constraint (16). This problem was considered by Ren and Wei [24] as the Γ-limit
problem of the two phase diblock copolymer energy. It was shown that all N -layer one dimensional
equilibria are in fact local energy minimizers. In our situation, this means that stability with respect
to longitudinal perturbations is expected.

2.2 Dynamics of long wavelength disturbances

To investigate the evolution of weakly bent lamellar multilayers, the transverse variable is scaled
y′ = ε1/2y, and a timescale t′ = εt is used. The interfaces of the multilayered structure are regarded
as graphs x = ηj(y

′, t′). The free boundary problem in the new coordinates is (after dropping
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primes)

εvyy + vxx = Φ0, εwyy + wxx = 0, (30)

v [Φ0]j + w [Ψ0]j = εσj

(
ηjy/

√
1 + εη2

jy

)
y
, (31)

[w]j = 0 = [v]j , (32)

εηjt/
√

1 + εη2
jy = −[vx + εvyηjy]j/[Φ0]j = −[wx + εvyηjy]j/[Ψ0]j . (33)

Here σj is the surface energy associated with the j-th interface, []j is the jump (oriented in the
positive x direction) across the j-th interface.

The quantities v, w, ηj are expanded in powers of ε. The leading order solutions are simply
those corresponding to the equilibrium multilayer with v0 given by (29), w0 = 1 and ηj0 = xj . The
next order gives

v1xx = 0 = w1xx, x 6= xj (34)(
v1(xj) + v0x(xj)ηj1

)
[Φ0]j + w1(xj) [Ψ0]j = 0, (35)

[w1]j = 0, (36)

[v1x]j + ηj1[v0xx]j = 0 = [w1x]. (37)

It follows w1 is continuously differentiable and therefore w1 = 0. It is then easy to check that an
explicit solution to (34-37) is v1 = −ηv0x, where ηj1 ≡ η(y, t) are the same for all j.

The system for order ε2 is

v2xx = −ηyyv0x, w2xx = 0, x 6= xj (38)(
v2(xj) + v0x(xj)ηj2 −

1

2
v0xx(xj)η

2
)

[Φ0]j + w2(xj) [Ψ0]j = σjηyy, (39)

[w2]j = 0, (40)

ηt = −
(

[v2x]j + [v0xx]jηj2

)
/ [Φ0]j = −[w2x]/ [Ψ0]j . (41)

Solvability is obtained by multiplying the equation for v2 by v0x, integrating this by parts on each
subinterval, and summing the results. This leads to

ηyy

∫
R
v2

0xdx =

N∑
j=0

−v0x(xj)[v2x]j + σjηyy − w2(xj) [Ψ0]j +
1

2

[
Φ2

0

]
j
η2 − v0x(xj)[v0xx]jηj2 (42)

=

N∑
j=0

v0x(xj) [Φ0]j ηt − w2(xj) [Ψ0]j + σjηyy, (43)

where the fact
∑N

j=0

[
Φ2

0

]
j

= 0 was used. The solution w2x = −ηtΨ0 can be obtained from

integrating w2xx = 0 and using condition (41). Then one calculates

N∑
j=0

v0x(xj) [Φ0]j = −
∫
R

Φ2
0 dx, (44)

and

N∑
j=0

w2(xj) [Ψ0]j = −
N∑
j=0

∫
R

(w2Ψ0)xdx = ηt

∫
R

Ψ2
0 dx. (45)
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Then (42) is nothing more than the diffusion equation

Iηt = Dηyy, I =

∫
R

Φ2
0 + Ψ2

0 dx, D =
N∑
j=0

σj −
∫
R
v2

0x dx. (46)

The threshold for long wavelength instabilities is D = 0, which represents a plane in σAB-σAS-σBS
parameter space (see figures 3 and 4).

2.3 The linearized free boundary problem

To investigate finite wavelength instabilities, the complete linearization of the multidimensional free
boundary problem is formulated. The perturbed interfaces are described as graphs x = xj+ x̃j(y, t)
where x̃j is assumed small. The interface curvatures are approximated κj ≈ ∂2x̃j/∂y

2, whose sign
implies that the + side of each interface in the boundary conditions corresponds to x > xj .

The field variables v and w are expanded v(x, y) = v0 + ṽ and w(x, y) = w0 + w̃, which solve

∆ṽ = 0, ∆w̃ = 0, (47)

and the boundary conditions (9,10) expand to give

(
v0x(xj)x̃j + ṽ(xj , y)

)
[Φ0]+− + w̃(xj , y)[Ψ0]+− = σj

∂2x̃j
∂y2

(48)

[ṽ]+− = 0 = [w̃]+−. (49)

The linearized interface velocity (11) for the j-th interface is obtained from expanding the
normal derivatives as ∂v/∂n = v0xx(xj)x̃j + ṽx(xj). Using the fact [v0xx]j = −[Φ0]j , this produces

x̃jt + x̃j = [ṽx]j/[Φ0]j . (50)

2.4 Large solvent-polymer surface energies

In general, the linear system (47,48,50) admits only a partial analytical solution, and the complete
calculation requires numerical solution of an eigenvalue problem. The limit where σAS , σBS � σAB
is somewhat more tractable, and is useful to illustrate the crossover between long wavelength
and small wavelength instabilities. In this case, the edge interfaces are essentially immobile so
x̃0, x̃N ≈ 0, and only the interior AB-interfaces play a role in the instability.

Consider the case N = 2, where x̃0,2 ≈ 0, and x̃1 = cos(ky). By virtue of (50), the perturbed
fields ṽ, w̃ are continuously differentiable across x0 and x2, so that

ṽ = A cos(ky)

{
ekx x < 0,

e−kx x > 0,
(51)

w̃ = B cos(ky)

{
ekx x < 0,

e−kx x > 0.
(52)

The conditions (48) and (50) give

−k2σAB = −(A+ v′0(x1)) +B(1− 2f), (53)

λ = −2Ak − 1 =
2Bk

1− 2f
. (54)
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This system yields the growth rate

λ =
2k
√

4f2 − 4f + 2− 2σABk
3 − 1

1 + (1− 2f)2
. (55)

A finite wavelength instability at wavenumber k∗ is incipient at the value σAB = σ∗AB. Setting
λ(k∗) = λ′(k∗) = 0 we find

k∗ =
3

4
√

4f2 − 4f + 2
, σ∗AB =

16

27
(4f2 − 4f + 2)3/2. (56)

This compares favorably with the vertical asymptotes of the curves in figure 3.
A similar calculation can be done in the case N = 3, where x̃0,3 ≈ 0, and x̃1,2 = cos(ky). With

x2 = −x1 =
√

4f2 − 4f + 2, the field variables ṽ, w̃ can be found as

ṽ = A cos(ky)

{
ekx |x| > x2,

e−kx cosh(kx)/ cosh(kx1) |x| < x2,
(57)

w̃ = B cos(ky)

{
ekx |x| > x2,

e−kx cosh(kx)/ cosh(kx1) |x| < x2.
(58)

(59)

Conditions (48) and (50) yield

−k2σAB = −Aekx1 − v0x(x1) +Bekx1(1− 2f), (60)

λ = −2Akekx1(tanh(kx1)− 1)− 1 =
2Bk

1− 2f
, (61)

and elimination as before gives the growth rate

λ =
[tanh(kx1)− 1](σABk

3 − k
√

4f2 − 4f + 2)− 1

1 + (1− 2f)2
. (62)

The conditions for onset of a finite wavelength instability in this case lead to transcendental equa-
tions. For f = 1/2, for example, one finds k∗ = 0.81 and σ∗AB = 0.55, which compares favorably to
figure 4.

2.5 Transverse instability for arbitrary wavenumbers

Exact solutions to the linearized free boundary problem (47,48,50) are now computed. For pertur-
bations which do not grow as |y| → ∞, it is sufficient to consider modes of the form

x̃j = Xje
λt cos(ky), j = 0, 1, . . . , N (63)

where k > 0. The solutions for w̃ an ṽ can be explicitly constructed as

ṽ = (V +
m e

kx cos(ky) + V −m e
−kx cos(ky))eλt (64)

w̃ = (W+
me

kx cos(ky) +W−me
−kx cos(ky))eλt (65)

for each subregion xm−1 < x < xm where m = 0, 1, .., N + 1. In writing this, we define x−1 = −∞
and xN+1 = +∞. By virtue of the far field conditions, V −0 = 0 = W−0 and V +

N+1 = 0 = W+
N+1.
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Inserting (63,64,65) into (48-49) gives linear relations for each j = 0, 1, 2, . . . , N of the form

(V +
m e

kxj + V −m e
−kxj )[Φ0]j + (W+

me
kxj +W−me

−kxj )[Ψ0]j = −
(
σjk

2 + v0x(xj)
)
Xj , m = j, j + 1

(66)

V +
j e

kxj + V −j e
−kxj = V +

j+1e
kxj + V −j+1e

−kxj , (67)

W+
j e

kxj +W−j e
−kxj = W+

j+1e
kxj +W−j+1e

−kxj , (68)

where σj , [Φ0]j , [Ψ0]j are the corresponding values at the unperturbed interfaces x = xj . Since one
of the relations (66-68) is redundant, it can be seen that (66-68) represent 4 + 4N equations for
the 4 + 4N unknowns V ±j and W±j . These can be written in matrix-vector notation as LC = BX

where C = (V +
0 ,W+

0 , . . . , V
−
N+1,W

−
N+1)T , X = (X0, X1, . . . , XN ), and L is square and invertible.

The linearized interface velocity (50) leads to

k(V +
j+1e

kxj − V −j+1e
−kxj − V +

j e
kxj + V −j e

−kxj )/[Φ0]j = (λ+ 1)Xj , j = 0, 1, . . . , N, (69)

which can be written in matrix form as MC = (λ + 1)X. It follows that the linearized growth
rates formally satisfy the eigenvalue problem

ML−1BX = (λ+ 1)X. (70)

This problem is solved numerically.
Using the lamellar equilibrium solutions in section (2), it is possible to compute the maximum

eigenvalue λmax as a function of wavenumber k and other system parameters. A typical result is
shown in figure 2. Significantly, stability of lamellar structures appears to be more likely for larger
surface energies.

The neutral stability curves in surface energy parameter space given by λmax = 0 are plotted in
figure 3 for the case N = 2. These curves coincide with the long wavelength results (dotted lines)
when the surface energy σAB is dominant. In the opposite case where the edge surface energies
dominate, our earlier predictions about instability are also corroborated. The modes of instabilities
can be further characterized using the eigenvectors associated with λmax which allow us to uncover
the amplitude at which each perturbed interface operates. The fastest growing modes are also
shown in figure 3, also in agreement with earlier analytic predictions.

The neutral stability curves with N = 3 are also is presented in figure 4. The results are
similar to the N = 2 case, with long wavelength instability dominant when σAB � σAS , and finite
wavelength instability dominant when σAB � σAS .

The case of larger numbers of layers was also investigated. Figure 5 shows neutral stability
curves as a function of surface energy for the cases N = 2, 3, 4, 5. Notice that instability is more
prevalent as the number of interfaces increases.

2.6 Nonlinear evolution

Here we briefly illustrate the evolution of the morphology in the case where a lamellar multilayer
is unstable. In principle, a weakly nonlinear analysis might capture certain aspects of this process.
On the other hand, we generally find that instabilities represent subcritical bifurcation points, and
the dynamics drives interfaces to a complex shape unobtainable by a perturbative analysis.

To approximate the free boundary evolution, we use the continuum equations (4-5). The po-
tential employed has the form

W = Aφ2
A(1− ΦA)2 +Bφ2

B(1− ΦB)2 + Cφ2
S(1− ΦS)2, (71)
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Figure 6: Evolution of an unstable multilayer (N = 2) with surface energies just below threshold.
The final state (right) appears to be a stable equilibrium.

where the phase volume fractions are related to Φ and Ψ by (1). By explicitly computing the
heteroclinic orbits that define the diffuse interface (see the appendix), we find that A = 18.4 = B
and C = 65.6 give roughly σAB = σAS = σBS = 1, for example.

Figure 6 shows the evolution of a barely unstable multilayer (N = 2,f = 0.5). To accomplish
this, the potential was scaled so that all surface energies are 0.65, and a perturbed initial condition
was provided by first computing a one dimensional equilibria. The computation was done on a
10242 grid using periodic boundary conditions. Other details of the numerical method are in [25].

Notably, the mode of instability is as predicted, with the outer interfaces much less mobile than
the middle interface. As the magnitude of this mode grows, however, the periodic symmetry in the
longitudinal direction is broken. This results in a straightening of the layered configuration over
most of its length, and an undulation of interfaces at a single location. This process appears to
equilibrate, creating a novel equilibrium structure.

3 Concentric equilibria

We now consider multilayered equilibria with radial symmetry in two and three dimensions. There
are two qualitative cases to consider: micelles, which only have solvent on the exterior and vesicles
which have a solvent core. In the former case, we suppose that the A-monomer domains are of the
form rj < r < rj+1 where r0 = 0 and j is even. The B-monomer domains are therefore of the form
rj < r < rj+1 with j odd, and the solvent domain is r > rN . The vesicle case is similar except
r0 > 0 and the solvent domain includes r < r0.

In arbitrary dimension d ≥ 2, the free boundary problem for concentric equilibria is

∆v =


0 r < r0,

1− f rj < r < rj+1, j even,

−f rj < r < rj+1, j odd,

(72)

v(rj) =

{
−(d− 1)σAB/rj + 1− 2f, 0 < j < N , j even,

(d− 1)σAB/rj + 1− 2f, 0 < j < N j odd,
(73)

v(rN ) =

{
(−(d− 1)σBS/rN + 1− f)/(f), N even,

(−(d− 1)σAS/rN + f)/(f − 1), N odd,
(74)

[vr]rj = 0, 0 < j < N, vr(0) = 0 = vr(rN ). (75)
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For the vesicle case, the innermost interface has the boundary condition

v(r0) = ((d− 1)σAS/r0 + f)/(f − 1). (76)

The solution procedure we employ is hybrid analytical/numerical shooting method, which yields
a function S(r) whose zeros correspond to equilibrium values of r1 for the micelle case or r0 for
the vesicle case. The solution to (72) together with (75a) is determined analytically layer by layer.
The other boundary conditions are algebraically intractable and require numerical solution.

3.1 Micelles

For 0 < r < r1, equation (72) admits the solution

v(r) =
1− f

2d
(r2 − r2

1) + σAB/r1 + 1− 2f. (77)

Provided r1 is known, this completely determines the solution for r < r1 and provides boundary
conditions at r1 for the domain r1 < r < r2. Proceeding inductively, v(r) is determined on each
interval rj < r < rj+1 for j < N − 1, yielding

v(r) =

{
−f
2d (r2 − r2

j ) + cjG(r, rj) + (d− 1)σAB/rj + 1− 2f, j odd
1−f
2d (r2 − r2

j ) + cjG(r, rj)− (d− 1)σAB/rj + 1− 2f, j even
(78)

where G(r, r1) = ln(r/r1) for dimension d = 2 and G(r, rj) = 1/rj − 1/r for d = 3. Using the
condition (75) one has c1 = rd1/d and in general cj+1 = cj − (−1)jrdj /d.

The sequence of radii r2, r3, ... can be found recursively by using the boundary conditions (74),
noting that rj+1 = ρ is a solution to

v(ρ) = R(ρ) ≡

{
−(d− 1)σAB/ρ+ 1− 2f, j odd

(d− 1)σAB/ρ+ 1− 2f, j even.
(79)

Analytic solutions of (79) are either impossible or too cumbersome to be of value. On the other
hand, it is possible to show that there is a unique solution with ρ > rj , roughly as a result of
monotonicity of each side of (79). When j is odd, for example, v(rj) > 1 − 2f and v(ρ) is either
decreasing to −∞ for ρ > rj or has a single local maximum rmax > rj such that v(ρ) will be
decreasing to −∞ for ρ > rmax. For the right hand side of (79), R(rj) = 1 − 2f and R(ρ) is
increasing as a function of ρ. A similar argument applies for j even. In practice, rj+1 is found
numerically by simple bisection.

For the domain where r > rN−1, the outermost radius rN is found by invoking the last condition
in (75), vr(rN ) = 0, which leads to

rN =


(
dcN−1

f−1

)1/d
, N odd,(

dcN−1

f

)1/d
, N even.

(80)

At this point, we have constructed a function v(r; r1) so as to satisfy (72-75) except for the Dirichlet
boundary condition at rN . Moreover, induction on j shows that both v(r; r1) and the radii rj(r1)
are smooth functions of r1. It follows that equilibrium solutions correspond to zeros of the smooth
function

S(r1) =

{
v(rN ; r1)− (−(d− 1)σAS/rN + f)/(f − 1), N odd,

v(rN ; r1)− (−(d− 1)σBS/rN + 1− f)/f, N even.
(81)
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Figure 7: Equilibrium radii r1 versus the surface energy parameter σAB = σAS = σBS , showing a
fold bifurcation. The dimension is d = 2 in all cases; results for three dimensions look similar.

Numerical solutions using the procedure are shown in figure 7. In general, micelle equilibria only
exist when surface energies are small enough. Two branches of solutions are observed, terminating
in a fold bifurcation as one (or more) of the surface energy parameters is increased. Existence of
these type of equilibria appear to be more likely as either the number of layers or the A-monomer
volume fraction is increased.

3.2 Vesicles

The procedure outlined above can be modified in the situation where solvent occupies the innermost
domain. In this case, for r0 < r < r1 equation (72) admits the solution

v(r) =
1− f

2d
(r2 − r2

0) + c1G(r, r0) + ((d− 1)σAS + f)/(f − 1) (82)

where c1 = (f − 1)rd0/d by virtue of vr(r0) = 0. The remainder of the construction for v(r) and rj ,
j = 1, 2, 3, . . . , N is given above. Note this means that v(r; r0) and rN are smooth functions of r0,
and so is the function S(r0), whose zeros in this case correspond to vesicle-type equilibria.

In contrast to the micelle case, S(r0) may have zero, one or two roots. The behavior of radii
as a function of the surface energy parameter σAB is shown in figure 8. When all surface energies
are set equal, we find that there in only one branch of solutions, terminating at infinite radius. In
contrast, when the edge surface energy σAS is small, there may be two branches connected by a
fold bifurcation.
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Left: when all surface energies are equal, there is only one branch of solutions. Right: When
σAS = σAB/20 (N = 3), there may be two solution branches.

3.3 Large radii vesicles

Vesicle configurations whose interfaces have large radii may be regarded as weakly curved lamellar
multilayers. For this reason, a perturbation expansion of (72-75) using the small parameter ε = 1/r0

is useful. This is done by expanding v(r) = v0(r) + εv1(r) + . . . and rj = r0 + rj0 + εrj1 + . . .,
where it is supposed that rj0 = O(1). The surface tension values σj at each interface operate as
bifurcation parameters, and they are expanded σj = σj0 + o(1). The values of σj0 where the vesicle
solution bifurcates from the straight lamellar one will be determined.

The leading order solution is the equilibrium multilayer with v0 given by (29), and r0j = xj are
just the lamellar multilayer interface locations. The next order system is

v′′1 = (1− d)v′0, (83)

v1(r0 + rj0) + v′0(r0 + rj0)rj1 = (1− d)σj/[Φ0]j , (84)

[v′1]j + [v′′0 ]jr1j = 0, (85)

where as before []j is the jump across the j-th interface. Solvability is obtained as in the discussion
in section (2.2), by multiplying equation (83) by v′0, integrating this by parts on each subinterval,
and summing. The result is

Π(σAB, σAS , σBS) = Π∗ ≡
∫
R
v′20 dr, Π ≡

N∑
j=0

σj , (86)

which describes a codimension one surface in (σAB, σAS , σBS)-parameter space. Comparing to (46),
it follows that the threshold for long wavelength instability of the lamellar multilayer is precisely
where large radii vesicles bifurcate.

Numerical evidence indicates a crossover from a supercritical situation, where a unique branch
of vesicle solutions exist only when Π < Π∗ as in figure 8(left), to a subcritical one where two
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branches which exist above the infinite-radius bifurcation surface.

solution branches exist for Π > Π∗. A phase diagram showing this crossover is given in figure 9,
showing regions in parameter space defined by the number of branches.

3.4 Stability of concentric equilibria

The stability of concentric equilibria is now considered, including both the possibility of radial and
azimuthal perturbations. The formulation of the linearized problem is described for vesicles; the
case of micelles is nearly identical.

For the two dimensional situation, the j-th deformed interface is described as a graph r = r(θ)
where r(θ) = rj + r̃j(θ, t) and r̃j is assumed small. As in the lamellar case, the field variables are
also perturbed as v(r, θ) = v0 + ṽ and w(r, θ) = w0 + w̃, where ∆ṽ = 0 and ∆w̃ = 0. The linearized
boundary condition (9) is(

v0r(rj)r̃j + ṽ(rj , θ)
)
[Φ0]j + w̃(rj , θ)[Ψ0]j = σj

r̃j + r̃jθθ
r2
j

(87)

and the linearized interface velocity (11) is

r̃jt + r̃j = [ṽr]j/[Φ0]j . (88)
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It suffices to consider interface perturbations which are circular harmonics, leading to

r̃j = Rje
λt cos(nθ), j = 0, 1, . . . , N (89)

ṽ = (V +
m r

n cos(nθ) + V −m r
−n cos(nθ))eλt (90)

w̃ = (W+
mr

n cos(nθ) +W−mr
−n cos(nθ))eλt (91)

for each subregion rm−1 < r < rm where m = 0, 1, .., N + 1. Similar to the lamellar case, we
define r−1 = 0 and rN+1 = +∞, which forces the field coefficients to be V −0 = W−0 = 0 and
V +
N+1 = W+

N+1 = 0. In the case of radial perturbations where n = 0, The last two expressions (90)
and (91) are replaced by

ṽ = (V +
m + V −mG(r))eλt (92)

w̃ = (W+
m +W−mG(r))eλt, (93)

where G is the Green’s function, and V −N+1 = W−N+1 = 0 instead.
Using (89 - 91) in (87) and (88) produces linear relations

(V +
m r

n
j + V −m r

−n
j )[Φ0]j + (W+

mr
n
j +W−mr

−n
j )[Ψ0]j =

(
σj

1− n2

r2
j

− v0r(rj)[Φ0]j

)
Rj , m = j, j + 1

(94)

n(V +
j+1r

n−1 − V −j+1r
−(n+1) − V +

j r
n−1 + V −j r

−(n+1))/[Φ0]j = (λ+ 1)Rj , j = 0, 1, . . . , N. (95)

Equations (94) and the continuity of w̃

W+
j r

n
j +W−j r

−n
j = W+

j+1r
n
j +W−j+1r

−n
j (96)

form a a linear system of 4(N + 1) equations and 4(N + 1) unknowns. The remainder of the
formulation is identical to the lamellar case, producing an eigenvalue problem of the form (70).

The three dimensional case has perturbations which are graphs

r = rj + r̃j(θ, φ, t), (97)

where θ and φ are the azimuthal variables in spherical coordinates. In this case, it is sufficient to
take interface deformations which are spherical harmonics Y m

l (θ, φ) leading to expressions

r̃j = Rje
λtY m

l (θ, φ), j = 0, 1, . . . , N (98)

ṽ = (V +
m r

lY m
l (θ, φ) + V −m r

−(l+1)Y m
l (θ, φ))eλt (99)

w̃ = (W+
mr

lY m
l (θ, φ) +W−mr

−(l+1)Y m
l (θ, φ))eλt (100)

Using the above expressions produces the linearized curvature boundary conditions and linearized
normal velocity

(V +
m r

l
j + V −m r

−(l+1)
j )[Φ0]j + (W+

mr
l
j +W−mr

−(l+1)
j )[Ψ0]j = −

(
σj
l(l + 1)

r2
j

+ v0r(rj)[Φ0]j

)
Rj , m = j, j + 1

(101)

(V +
j+1lr

(l−1) − V −j+1(l + 1)r−(l+2) − V +
j lr

(l−1) + V −j (l + 1)r−(l+2))/[Φ0]j = (λ+ 1)Rj , j = 0, 1, . . . , N,

(102)

The remainder of the formulation is the same as the case of two dimensions.
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Figure 10: Two dimensional micelle neutral stability curves whereN = 2 (top) andN = 3 (bottom).
The figures to the left are for the small radii branch, and the figures to the right are the large radii
branch of equilibria. The (blue) dotted lines represent the fold bifurcation, above which micelles
will not exist. From bottom to top they correspond to f = 0.5, 0.6, 0.7, respectively.

The eigenvalue problems described above were solved numerically for a variety of parameters.
Figure (10) shows neutral stability curves (black) for both small (left) and large (right) micelles in
surface energy parameter space, where N = 2, 3. In the case N = 2, σAS = σBS . The dotted (blue)
curves indicate the upper bound for existence, corresponding to the fold bifurcation in figure 7.
Figure (11) shows the same type of plot for the three dimensional case. The region for instability of
small micelles with N = 2 is inside the narrow oval regions. This suggests that two-layer micelles
enjoy considerable stability and might be commonly observed structures, consistent with numerical
simulations of the continuum equations [3].

In figure 12, the neutral stability curves for vesicle equilibria are shown, where d = 2 and
N = 2, 3, together with the existence threshold (dotted). The situation in three dimensions is
qualitatively similar. In light of the results of section 3.3, it appears that modestly curved vesicles
are stable, but instabilities appear as the curvature increases.
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Figure 11: Three dimensional micelle neutral stability curves where N = 2 (top) and N = 3
(bottom). The figures to the left are for the small radii branch, and the figures to the right are the
large radii branch of equilibria. The (blue) dotted lines represent the fold bifurcation, corresponding
to f = 0.5, 0.6, 0.7 from bottom to top.
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Figure 12: Vesicle neutral instability curves in terms of the interface surface energy using f=1/2
for N=2 and N=3. Unstable modes to the left of the curves and stable modes to the right of the
curve. The dotted lines represent the upper existence bound on σAB, corresponding to either the
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4 Discussion and conclusions

In this paper, many of the basic morphologies expected in copolymer-solvent mixtures have been
explored. Translational or radial symmetry allowed for detailed calculations of bifurcation and
stability. Broadly speaking, there are a variety of possible stable structures, but these exist over
limited parameter ranges. Instabilities give rise to many questions of dynamical development which
potentially leads toward more exotic equilibria which have not been considered here.

The stability of lamellar structures runs parallel to studies of two phase copolymer mixtures
[26, 27]. Placing our results back into a dimensional frame, the similarities are apparent. One
common theme is that stability is moderated by competition between surface energy and the effect
of polymer stretching modeled by the nonlocal term in the energy functional. The former effect
resists bending of lamellar layers, whereas the latter promotes it.

Stability of two- and three layer lamellar multilayers was considered by van Gennip and Peletier
[19]. They work in a variational setting, using an energy which is essentially the energy defined in
(18) and (19). They find that the two-layer solution is always unstable with respect to arbitrary
wavelength perturbations. At first this appears to be at odds with our findings. The difference is
that [19] considers only stability of the configuration of optimal width, which they define to be the
one with least energy to mass ratio. In terms of our dimensionless formulation, this would have
the effect of restricting the set of parameters over which stability is computed. We have verified by
numerical simulation of (4-5) that there are situations where the two layer solution is stable.

There are also connections between our results for concentric micelle-type equilibria and those
for the pure diblock case studied by Ren and Wei [16]. Viewing micelle equilibria as critical
points of the energy constrained by fixed polymer region volume, the resulting equilibrium free
boundary problem is exactly that studied in [16]. The results in [16] indicate that the strength of
the interaction parameter (here α) must be sufficiently large for existence of equilibria. Placing
this in our nondimensional formulation, this means that σAB surface energy must be small, which
is qualitatively consistent with our findings.

21



Our findings appear to translate back to the density functional model. We have checked our sta-
bility results for both lamellar and concentric states, and find they generally agree with simulations
of (4-5), even in circumstances where the interface thickness is not particularly small. Instabilities
appear to give rise to more exotic structures, such as those reported in numerical simulations and
experiments [21, 22]. In this respect, our results should clarify the parameter regimes where radially
symmetric equilibria should or should not be observed.

The study presented here dealt specifically with contiguous equilibrium structures in isolation.
In greater generality, there may be competition among many of these, akin to Ostwald ripening of
dilute phase separated mixtures. The interaction takes the form of mass exchange between isolated
aggregates, driven by gradients of the chemical potential ν. This raises the possibility of instabilities
when placed in an environment which produces an ambient chemical potential at infinity different
than that imposed by the far field boundary condition (13). Here, this possibility was specifically
excluded by preventing mass flux from the far field using (14).

There are many other morphological classes which have not been studied here, including double-
and multiple- bubble shapes [28, 29]. In addition, there are many dynamic features left unresolved,
including nonlinear effects and the evolution of weakly curved lamellar configurations (e.g. [30, 31]).
The present study provides a first step to exploring the wide variety of phenomenon in copolymer-
solvent systems.

Appendix: some remarks on the sharp-interface limit

Here we recall some of the standard issues needed to derive the singular limit of the equations (4-5)
using matched asymptotic expansions. Much of this analysis is well documented throughout the
literature [13, 14, 23], so our purpose here is to point out the unique aspects of our problem.

Away from interfaces, the quantities Φ,Ψ, µ and ν are expanded in powers of ε as Φ = Φ0 +
εΦ1 + . . . etc. The leading order solutions give ∆µ0 = 0 = ∆ν0, which when matched to the inner
layer will give µ0 = ν0 = 0. This implies that WΦ(Φ0,Ψ0) = 0 = WΨ(Φ0,Ψ0), which means that
(Φ0,Ψ0) represents one of the three minima of W . The next order reads ∆µ1 = αΦ0 and ∆ν1 = 0.
After rescaling, this permits the identification of µ1 with v and ν1 with w in the free boundary
problem.

The solution near the interfaces (inner expansion) uses a standard fitted coordinate system
(ρ, s) with ρ = ε−1r, chosen so that r is the signed distance to the interface and s is the transverse
coordinate (or coordinates). Expanding as before, the leading order inner problem is

µ0 = −Φ0ρρ +WΦ(Φ0,Ψ0),

ν0 = −Ψ0ρρ +WΨ(Φ0,Ψ0).

along with µ0ρρ = 0 = ν0ρρ. The latter implies after matching that µ0 and ν0 are constants, which
can be shown to be zero by integration of these equations (assuming the potential W has wells
of equal depth). The interface profiles represent heteroclinic orbits of this system which connect
minima of W . The next order in the expansion gives a linear system

−Φ1ρρ +WΦΦ(Φ(0),Ψ(0))Φ(1) +WΦΨ(Φ(0),Ψ(0))Ψ(1) = µ1 + κΦ0ρ

−Ψ1ρρ +WΨΦ(Φ(0),Ψ(0))Φ(1) +WΨΨ(Φ(0),Ψ(0))Ψ(1) = ν1 + κΨ0ρ

which has a solvability condition (e.g. [23])

µ1 [Φ0]+− + ν1 [Ψ0]+− = −κΣ,
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where the surface energy is given by the integral

Σ =

∫ ∞
−∞

(Φ0
2
ρ + Ψ0

2
ρ)dρ.

This quantity can also be characterized using the Γ-convergence results of Baldo [32], which does
not rely on knowing the interface profiles explicitly. Expansion of the equations for µ and ν at
order ε2 lead to the interface velocity conditions as in the classical Cahn-Hilliard setting [13].

Because the domain under which (4-5) is considered is unbounded, this leads to a situation
where the free boundary problem obtained above is potentially incompatible with the given far
field boundary conditions. This can be seen directly, for example, in the one dimensional case. In
the solvent region, µxx = 0, which cannot be solved when imposing both a nonzero value for µ on
an edge interface and µ(±∞) = 0.

The resolution to this apparent paradox is to introduce a “diffusion” layer into the expansion,
which uses the stretched coordinate X = ε1/2x, valid where X = O(1). Taking W ≈ 1

2(Φ2 + Ψ2)
for simplicity, the equations in the new coordinates are

Φt = ∆Φ− αΦ, Ψt = ∆Ψ, (103)

where Φ = Φ(X, t) and Ψ = Ψ(X, t) (note ε has vanished entirely). These diffusion equations
are supplemented with the corresponding far field boundary conditions and a boundary condition
given by matching to the solution where X = O(ε1/2). Notice this means that in equilibrium for
|x| >> 1, µ ∼ Φ solves a Helmholtz equation ∆Φ = αΦ, which admits exponentially decaying
solutions as x→∞. It is therefore possible to have a nonzero interface value for µ and yet have µ
decay at infinity.

Our analysis of the free boundary problem is limited to either equilibrium where ν ≡ ν∞, or
to localized perturbations where the dynamics in the stretched region are not important. In this
case, it is sufficient to impose conditions (14) which prevent the flux of either Φ or Ψ to and from
infinity, which would of course be introduced by a nonzero diffusion layer.

Acknowledgment

SO was supported through a NSF-Alliance Postdoctoral award DMS-0946431. KG was supported
through NSF award DMS-1514689.

[1] Karen I Winey, Edwin L Thomas, and Lewis J Fetters. Isothermal morphology diagrams for
binary blends of diblock copolymer and homopolymer. Macromolecules, 25(10):2645–2650,
1992.

[2] Takeji Hashimoto, Satoshi Koizumi, and Hirokazu Hasegawa. Ordered structure in blends of
block copolymers. 2. self-assembly for immiscible lamella-forming copolymers. Macromolecules,
27(6):1562–1570, 1994.

[3] Takao Ohta and Aya Ito. Dynamics of phase separation in copolymer-homopolymer mixtures.
Physical Review E, 52(5):5250, 1995.

[4] Aya Ito. Domain patterns in copolymer-homopolymer mixtures. Physical Review E, 58(5):6158,
1998.

23



[5] T. Uneyama and M. Doi. Calculation of the micellar structure of polymer surfactant on the
basis of the density functional theory. Macromolecules, 38(13):5817–5825, 2005.

[6] Takashi Uneyama. Density functional simulation of spontaneous formation of vesicle in block
copolymer solutions. The Journal of chemical physics, 126(11):114902–114902, 2007.

[7] Adam Blanazs, Steven P Armes, and Anthony J Ryan. Self-assembled block copolymer ag-
gregates: From micelles to vesicles and their biological applications. Macromolecular rapid
communications, 30(4-5):267–277, 2009.

[8] Yiyong Mai and Adi Eisenberg. Self-assembly of block copolymers. Chemical Society Reviews,
41(18):5969–5985, 2012.

[9] L. Leibler. Theory of microphase separation in block copolymers. Macromolecules, 13:1602–
1617, 1980.

[10] T. Ohta and K. Kawasaki. Equilibrium morphology of block coploymer melts. Macromolecules,
19:2621–2632, 1986.

[11] T. Ohta and K. Kawasaki. Comment on the free energy functional of block copolymer melts
in the strong segregation limit. Macromolecules, 23:2413–2414, 1990.

[12] J. W. Cahn and J. E. Hilliard. Free energy of a nonuniform system I. Interfacial free energy.
J. Chem. Phys., 28:258–267, 1957.

[13] R. L. Pego. Front migration in the nonlinear Cahn-Hilliard equation. Proc. R. Soc. Lond. A,
422:261–278, 1989.

[14] Y. Nishiura and I. Ohnishi. Some mathematical aspects of the micro-phase separation of
diblock copolymers. Physica D, 84:31–39, 1995.

[15] C. B. Muratov. Theory of domain patterns in systems with long-range interactions of Coulomb
type. Phys. Rev. E, 66(6):066108–+, December 2002.

[16] Xiaofeng Ren and Juncheng Wei. Concentrically layered energy equilibria of the di-block
copolymer problem. European J. Appl. Math., 13(5):479–496, 2002.

[17] T Ohta and M Nonomura. Elastic property of bilayer membrane in copolymer-homopolymer
mixtures. The European Physical Journal B-Condensed Matter and Complex Systems, 2(1):57–
68, 1998.

[18] Yves van Gennip and Mark A. Peletier. Copolymer-homopoymer blends: global energy min-
imisation and global energy bounds. Calc. Variations, 33:75–111, 2008.

[19] Yves Van Gennip and Mark A Peletier. Stability of monolayers and bilayers in a copolymer-
homopolymer blend model. Interfaces and Free Boundaries, 11:331–373, 2009.

[20] Karl Glasner. Multilayered equilibria in a density functional model of copolymer-solvent mix-
tures. SIAM Journal on Mathematical Analysis, 49(2):1593–1620, 2017.

[21] Edgar Avalos, Takeshi Higuchi, Takashi Teramoto, Hiroshi Yabu, and Yasumasa Nishiura.
Frustrated phases under three-dimensional confinement simulated by a set of coupled cahn–
hilliard equations. Soft matter, 12(27):5905–5914, 2016.

24



[22] Hiroshi Jinnai, Richard J Spontak, and Toshio Nishi. Transmission electron microtomography
and polymer nanostructures. Macromolecules, 43(4):1675–1688, 2010.

[23] Lia Bronsard, Harald Garcke, and Barbara Stoth. A multi-phase mullins–sekerka system:
Matched asymptotic expansions and an implicit time discretisation for the geometric evolution
problem. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 128(03):481–
506, 1998.

[24] Xiaofeng Ren and Juncheng Wei. On the multiplicity of solutions of two nonlocal variational
problems. SIAM Journal on Mathematical Analysis, 31(4):909–924, 2000.

[25] Karl Glasner and Saulo Orizaga. Improving the accuracy of convexity splitting methods for
gradient flow equations. Journal of Computational Physics, 315:52–64, 2016.

[26] Xiaofeng Ren and Juncheng Wei. On the spectra of three-dimensional lamellar solutions of
the diblock copolymer problem. SIAM journal on mathematical analysis, 35(1):1–32, 2003.

[27] Saulo Orizaga and Karl Glasner. Instability and reorientation of block copolymer microstruc-
ture by imposed electric fields. Physical Review E, 93(5):052504, 2016.

[28] T Ohta and M Nonomura. Formation of micelles and vesicles in copolymer-homopolymer
mixtures. Formation and Dynamics of Self-Organized Structures in Surfactants and Polymer
Solutions, pages 127–130, 1997.

[29] Xiaofeng Ren and Juncheng Wei. A double bubble in a ternary system with inhibitory long
range interaction. Archive for Rational Mechanics and Analysis, pages 1–53, 2013.

[30] Karl B Glasner and Alan E Lindsay. The stability and evolution of curved domains arising from
one-dimensional localized patterns. SIAM Journal on Applied Dynamical Systems, 12(2):650–
673, 2013.

[31] Shibin Dai and Keith Promislow. Geometric evolution of bilayers under the functionalized
cahn–hilliard equation. Proceedings of the Royal Society A: Mathematical, Physical and Engi-
neering Science, 469(2153), 2013.

[32] Sisto Baldo. Minimal interface criterion for phase transitions in mixtures of cahn-hilliard fluids.
In Annales de l’IHP Analyse non linéaire, volume 7, pages 67–90, 1990.
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