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Abstract. Nanoparticle structures formed in a mixture of diblock copolymer and solvent are
investigated using a three-phase density functional model and its sharp interface approximation.
A wide variety of equilibria described by localized domain patterns are quantified both numer-
ically and analytically. Competition among multiple particles is shown to occur through mass
diffusion driven by differences in chemical potential, which may or may not lead to Ostwald
ripening behavior. Late stage rigid body dynamics is shown to result from interaction through
dipolar fields, leading to orientational alignment and long range attraction.

Introduction

Block copolymer materials can create a wide variety of microstructures resulting from a com-
promise between phase segregation and polymer architecture which prevents complete separa-
tion [1–5]. In the presence of a solvent phase or confinement mechanism, these materials may
form structured nanoparticles. Many current and anticipated applications for block copolymer
nanostructures have emerged, including synthetic nanoreactors and drug delivery systems [4,5].

The self assembly of AB-diblock copolymers within a third immiscible phase (often called “soft
confinement”) has been well-documented in physical experiments [6–9]. Symmetric copolymers
are often observed to form concentric or layered domain structures [9–12], as well as more exotic
forms [13,14]. An even wider array of geometries can be realized in asymmetric mixtures [15–17].

The technological challenges to nanoparticle fabrication include controlling size and mor-
phology. Many possible mechanisms exist for influencing nanoparticle formation [18], including
annealing [19], Ostwald ripening behavior [20, 21] and controlling size with mixing rates [22].
There are many open questions concerning the kinetic aspects of synthesis and the preference
between competing morphologies, which motivates the current work.

Theoretical models have been successful at replication and prediction of copolymer nanopar-
ticle assembly [9, 23–29]. The primary focus of past work has been to reproduce equilibrium
morphologies seen in experiments. Outside of numerical simulation, very little work has been
done to characterize quantitative aspects of equilibria or dynamic phenomena surrounding them.

One popular modelling framework for inhomogeneous polymer systems arises from density
functional theory [30–32]. This produces systems which are derivatives of the classical Cahn-
Hilliard equation [33], and include non-local effects of polymer stretching. As common with
phase-field approaches, there is a natural limiting case where sharply defined domains of different
composition form. This allows passage to a free boundary problem which describes the evolution
of domain boundaries, rather than the composition itself [27,34,35]. This type of free boundary
problem is employed here to study domain interface configurations.

Localized or confined multi-domain structures have been studied previously in the context
of density functional theory and its free boundary limit. This includes lamellar configurations
and their stability [36–38], concentric geometries [27, 39], double bubbles [40], and dynamic
phenomenon [41,42]. Numerical work using Cahn-Hilliard-type systems has also revealed a wide
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range of equilibrium morphologies [9,26]. Stationary assemblies of multi-domain structures have
also been investigated in a related three-phase system [43].

This paper addresses the question of interaction among nanoparticles. A single particle in
isolation may be regarded as an equilibrium configuration of the free boundary problem, subject
to a constraint on its volume. The corresponding Lagrange multiplier may be identified as the
chemical potential associated with total polymer composition. In the classical scenario leading
to Ostwald ripening, the monotonic behavior of the chemical potential as a function of size leads
to coarsening behavior. In contrast, this may or may not occur in our system. In addition, the
chemical potential associated with monomer composition also drives interaction behavior among
particles. This results in both positional and orientational dynamics, which may be computed
explicitly.

The organization of this paper is as follows. Density functional models and their approxi-
mating free boundary problem are reviewed in section 1. Section 2 describes the equilibrium
free boundary problem and derives some qualitative and quantitative properties of solutions. A
reduced dynamical description of multi-particle interaction and some of its properties are de-
rived in section 3. Late stage interactions between particles which lead to rigid body motion are
studied in section 4. Finally, numerical simulations are used to confirm and illustrate theoretical
findings in section 5.

1. Density functional model and sharp interface approximation

The modelling framework employed here stems from density functional theory [30, 31, 35] for
heterogeneous polymer systems. The free energy is specified as a functional of composition
variables φA, φB, and φS , corresponding to copolymer constituents A and B, and a third phase
S, representing a homopolymer or poor solvent. One of these variables can be eliminated by
invoking the standard assumption of incompressibility φA + φB + φS = 1. In addition, the
fraction f ∈ (0, 1) of A-monomer relative to the total polymer volume is prescribed. Ohta and
Nonomura [44] reformulated this description using the order parameter u = (Φ,Ψ) where

(1) Φ = (1− f)φA − fφB, Ψ = fφA + (1− f)φB.

This has the advantage of decoupling the long-range interaction between the new variables.
The free energy for a system with domain Ω0 ⊂ R3 is [38, 44]

(2) F =

∫
Ω0

1

ε
W (u) +

ε

2

∣∣∣∇(G1/2u)
∣∣∣2 dx+

α

2

∫
Ω0

∫
Ω0

K(x, x′)Φ(x)Φ(x′) dx dx′,

The potential W (u) has minima

(3) uS = (0, 0), uA = (1− f, f), uB = (−f, 1− f).

corresponding to each pure phase. The symmetric, positive definite gradient energy tensor G
and potential W can be calibrated in order to prescribe interfacial energies, which is explained
below. Lastly, the nonlocal energy term has interaction kernel K(), which is taken to be the
Laplacian Green’s function.

Generalized chemical potentials ν, µ arise as variations of the free energy

(4) ν =
δF

δΦ
, µ =

δF

δΨ
.

Diffusive dynamics are driven by gradients of chemical potential resulting in

(5)

(
Φt

Ψt

)
= ∇ ·

[
M∇

(
δF/δΦ
δF/δΨ

)]
.

The mobility tensor M describes the rates of diffusion and cross-diffusion, and for simplicity of
presentation will be is taken to be the identity.
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The free boundary approximation of (5) is used as a more tractable model for our analysis.
This results in the usual way (e.g. [27, 34, 45, 46]) from the limit ε → 0, wherein (Φ,Ψ) →
(Φ0,Ψ0) = uA,B,S almost everywhere. The limiting configuration may therefore be associated
with corresponding domains ΩA,B,S . Polymer phase domains ΩA and ΩB are assumed open and
bounded in what follows. The solvent phase ΩS is the interior of the complement of ΩA ∪ ΩB,
which may be unbounded (depending on Ω0). The limiting free boundary problem involves the
phase interfaces, denoted ∂ΩI where I ∈ {AB,BS, SA}. The normal interface velocities Vn are
prescribed by the system

∆ν = αΦ0, x ∈ ΩS ∪ ΩA ∪ ΩB,(6)

∆µ = 0, x ∈ ΩS ∪ ΩA ∪ ΩB,(7)

ν [Φ0] + µ [Ψ0] = −σIκ, x ∈ ∂ΩI ,(8)

[ν] = 0 = [µ] , x ∈ ∂ΩI ,(9)

Vn [Φ0] = − [∂ν/∂n] , x ∈ ∂ΩI ,(10)

Vn [Ψ0] = − [∂µ/∂n] , x ∈ ∂ΩI .(11)

The notation [] refers to the difference in a quantity on either side of the interface, i.e. the jump
from from an arbitrarily prescribed − phase to the + phase. By convention, the normal to the
interface is oriented in the + direction, so that the interface mean curvature κ is positive if the
phase corresponding to − is locally convex. The parameters σI and α are surface energy and
polymer energy coefficients, respectively; their specification is described in detail below.

In addition to (6-11), there is a Herring-Young-Laplace condition imposed at triple junctions
[46], which may be stated

(12)
∑

I∈{AB,BS,SA}

σInI = 0,

where npq denotes the normal directed from phase p to phase q. It is useful to state this condition
in terms of vectors tI = l×nI , where l is the tangent to the three-phase line. After taking cross
products with l, (12) becomes

(13)
∑

I∈{AB,BS,SA}

σItI = 0.

The primary interest here is in one or more isolated contiguous structures within a large but
finite system domain Ω0. The problem of studying just a single structure in isolation can be
idealized by choosing the domain to be unbounded (section 2). The interaction of many such
structures can then be placed into a matched asymptotics framework (section 3.1), wherein the
inner solutions are, to leading order, the infinite domain equilibria. Solvability of (6) with either
periodic boundary conditions or suitable decay of µ at infinity demands that the volume fractions
of A and B domains satisfy

(14)
|ΩA|
|ΩB|

=
f

1− f
.

Numerical simulation of the free boundary problem will utilize the phase field approximation
(5). The surface energy parameters σI can be associated with the potential W and gradient
energy tensor G by

(15) σI = inf
γ

{∫ 1

0

√
W (γ(s))

∣∣∣G1/2γ ′(s)
∣∣∣ds, γ(0) = up, γ(1) = uq

}
,

where I = pq and up,uq are the potential minima for phases p and q. This represents an
extension of Baldo’s minimal path formula [47], wherein the equilibrium interface profiles γ(s)
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are characterized as geodesics with respect to a degenerate metric. A convenient choice for G
and W which satisfies this characterization was proposed by Boyer and Lapuerta [48]. For a
reference system with potential minima ũ = (0, 0),(1, 0) and (0, 1) they set

(16) G̃ =

(
Σ1 + Σ3 Σ3

Σ3 Σ2 + Σ3

)
and

(17) W̃ (ũ) = σABũ
2
1ũ

2
2 + σASũ

2
1(1− ũ1− ũ2)2 + σBSũ

2
2(1− ũ1− ũ2)2 + Λũ2

1ũ
2
2(1− ũ1− ũ2)2,

where Σ1 = σAB +σAS−σBS , Σ2 = σAB +σBS−σAS , Σ3 = σAS +σBS−σAB and Λ is a suitably
large adjustable parameter. To obtain a potential which has minima as in (3), the corresponding
gradient tensor and potential are obtained by a linear transformation

(18) G = QT G̃Q, W (u) = W̃ (Qu), Q =
1

f2 + (1− f)2

(
1− f f
−f 1− f

)
.

The parameters ε and α in (2) correspond to physical length scales. As in other diffuse
interface problems, ε is proportional to the interface width, and is set to unity for convenience.
A scaling argument [49] suggests that equilibrium domain structures will have a characteristic

width (defined in the narrow direction) proportional to α−1/3. To achieve a separation of length
scales required in the small ε limit, one needs α � ε−3. For later numerical computation, α is
fixed at 2× 103, ensuring that the sharp interface limit is respected.

The system (5) describes two types of phase segregation. On one hand, microphase segregation
between monomer components A and B leads to spatial inhomogeneity of the order parameter
Φ. This is ultimately inhibited by polymer stretching, encoded by the nonlocal energy term.
Similarly, phase segregation between polymer phases and solvent occurs, leading to inhomogene-
ity of Ψ. When the polymer occupies only a small fraction of the domain, the combined effect
of phase segregation processes is to create nanoparticles composed of patterned A and B phase
domains, whose morphology is highly dependent on surface energies, composition, and size. In
the absence of polymer effects, the phase segregation process would lead to Ostwald ripening,
wherein small particles shrink at the expenses of larger ones. It will be demonstrated that this
process is altered both quantitatively and qualitatively in the presence of microphase segregation.

2. Localized equilibria

The fundamental objects in this study are nanoparticle equilibria, which are stationary so-
lutions to the free boundary problem. A wide variety of such configurations have been ob-
served [9,27]. These structures are in equilibrium with their local environment, in the sense that
in isolation, the chemical potential µ which drives polymer mass diffusion is constant everywhere.
This section describes and quantifies some basic types of domain configurations.

2.1. Mathematical formulation and morphological classes. The equilibrium configura-
tions of interest may be characterized as a pair of bounded, open domains Ω = (ΩA,ΩB) with
piecewise smooth boundaries, satisfying (14), and comprising a simply connected set. These
satisfy the stationary version of the problem (6-13), which reads

∆ν = αΦ0, x ∈ ΩS ∪ ΩA ∪ ΩB,(19)

ν [Φ0] + µ∞ [Ψ0] = −σIκ, x ∈ ∂ΩI ,(20)

[ν] = 0 = [∂ν/∂n] , x ∈ ∂ΩI ,(21) ∑
I∈{AB,AS,BS}

σInI = 0, x ∈ ∂∂Ω,(22)
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with ∂∂Ω denoting three phase interfaces. As an idealization of a situation where an equilibrium
domain configuration is far from other structures, this problem is studied on the infinite domain
R3. This is exactly the leading order problem which arises when considering interaction of
well-separated particles section 3.1.

Note that the field µ ≡ µ∞ is a constant here. It is shown below that this can be regarded
as a Lagrange multiplier associated with a constraint on polymer domain size. The latter is a
conveniently characterized by the functional

(23) M = Σ(Ω) ≡
∫

Ω0

Ψ0 dx = f |ΩA|+ (1− f)|ΩB| = [f2 + (1− f)2]|ΩA ∪ ΩB|,

where (14) was used. In other words, M is proportional to the total volume occupied by the
polymer phases.

In general, explicit solutions to (19-22) are not easily obtained. Much more can be said about
certain distinct classes, such as concentric domains patterns [27]. We define a morphological class
Q to be a differentiable (in the sense defined below) family ΩQ(M) of topologically equivalent
equilibria with Σ(ΩQ(M)) = M . For a particular morphological class Q, there is assumed to be
a smooth dependence of equilibrium chemical potential µ∞ on size M ,

(24) µ∞ = µ∞(M ;Q).

For any particular configuration Ω (not necessarily at equilibrium), an admissible perturbation

Ω̃ corresponds to a normal displacement of the domain boundaries which maintains the volume
fraction constraint, as well as coherence of three phase junctions. Denoting the collection of such
boundaries as ∂Ω, this is a smooth mapping Ω̃ : ∂Ω→ R constrained to respect (14), so that

(25)

∫
∂Ω

[Φ0] Ω̃ dx = 0.

In addition, the interfaces must move so that they all intersect at three phase junctions. Denoting
the infinitesimal motion of the junction in a plane normal to the three phase line by q, it follows
that

(26) Ω̃ = nI · q, I ∈ {AB,AS,BS}.
This represents an over-determined linear system for q, whose solvability constrains the values
of Ω̃ at the three phase junction.

Lastly, a family of equilibrium configurations Ω(β) is said to be differentiable on some open
interval β1 < β < β2 if each interface in ∂Ω(β) can be locally described by a smooth param-
eterization x = x(s;β). In this case, we may define dΩ/dβ to be an admissible perturbation
where

(27)
dΩ

dβ
(x(s;β)) ≡ dx

dβ
(s;β).

2.2. Variational characterization of equilibria. As in other phase field systems, the sharp
interface problem (19-22) has a natural energy, arising from (2) as the Γ-limit (for the two phase
problem, see, e.g. [50]). This energy may be decomposed as E = Es + Ep, where Es is the sum
of surface energies

(28) Es =
∑

I∈{AB,AS,BS}

σI |∂ΩI |,

and Ep is the energy of polymer stretching,

(29) Ep =
α

2

∫
R3

∫
R3

K(x, x′)Φ0(x)Φ0(x′) dx dx′.
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Configurations satisfying (19-22) may be viewed as critical points of the augmented energy

Ẽ = Es+Ep−µ∞Σ. This follows by computing the variation of Ẽ with respect to an admissible

perturbation Ω̃

(30) 〈δẼ, Ω̃〉 ≡
∫
∂Ω

(
ν [Φ0] + σIκ+ µ [Ψ0]

)
Ω̃ dx+

∑
I∈{AB,BS,SA}

∫
∂∂Ω

σI(q · tI)dx.

The triple junction condition (22) arises as a natural boundary condition (in the calculus of

variations sense). The first term in (30) is zero for all admissible Ω̃; the latter set is simply the
orthogonal complement of [Φ0] by (25). It follows that for some constant c,

(31) ν [Φ0] + σκ+ µ [Ψ0] = c [Φ0] .

Redefining ν as ν − c leads to the equilibrium system (19-22).
The variational formulation can now be used to characterize the relationship between par-

ticle size and chemical potential in two different ways. First, suppose that ΩQ(M) is a given
morphological class of equilibria. Differentiation of E(ΩQ(M)) with respect to M gives

(32)
dE

dM
= 〈δẼ, dΩQ/dM〉+ µ∞(M)〈δΣ, dΩQ/dM〉 = µ∞(M).

This is just a restatement of the thermodynamic definition of chemical potential as the derivative
of free energy with respect to volume.

A second characterization of µ∞(M) can be made as follows. Given some equilibrium config-
uration Ω(1), consider the differentiable family Ω(r) of dilations, i.e. configurations ΩA(r) and
ΩB(r) defined so that x ∈ ΩA,B(1) if and only if rx ∈ ΩA,B(r). By virtue of the scaling of
individual energy components (in three dimensions),

(33) Ẽ(Ω(r)) = r2Es(Ω(1)) + r5Ep(Ω(1))− µ∞r3.

Differentiating with respect to r and setting r = 1 gives

(34) 〈δẼ(Ω(r)), dΩ(r)/dr〉|r=1 = 2Es(Ω(r)) + 5Ep(Ω(1))− 3µ∞Σ(Ω(1)),

or in other words

(35) µ∞ =
2Es + 5Ep

3M
.

In general, the quantitative relation among energy components, size and geometry is compli-
cated. For large particles, on the other hand, subdomains appear to have a characteristic width
independent of their size. This suggests an “equipartition hypothesis”: for large, low energy do-
main equilibria, the surface and polymer energy contributions are each proportional to particle
size. Therefore, the formula (35) says that µ∞ should approach, or at least be bounded from
below by, a constant as the size becomes large. Computations in section 5.3 are are consistent
with this conclusion.

2.3. Micelle equilibria. One tractable class of structures which admits analytic solutions are
two-domain “micelles”, where the domain boundaries ∂ΩAB and ∂ΩBS are concentric spherical
shells with radii r1 and r2. This means r1 = f1/3r2 by virtue of (14).

The solutions of equation (19) with condition (20) for r < r1 gives

(36) ν =
α(1− f)(r2 − r2

1)

2d
+

2σAB
r1

+ (1− 2f)µ∞,

whereas the solution for r1 < r < r2 is

(37) ν =
−αf(r2 − r2

1)

2d
+ c(1/r1 − 1/r) +

2σAB
r1

+ (1− 2f)µ∞.
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The constant c is determined by applying the second equality of (21) on the ∂ΩAB interface,
giving c = αr3

1/3. Finally, applying (20) gives

(38)
−αf(r2

2 − r2
1)

2d
+ αrd1(1/r1 − 1/r2) +

2σAB
r1

+ (1− 2f)µ∞ =
(1− f)µ∞

f
− 2σBS

fr2
.

which implies

(39) µ∞ =
f

f2 + (1− f)2

(
2(σABf

−1/3 + σBSf
−1)

r2
+
αr2

2(2f2/3 + f5/3 − 3f)

6

)
.

where

(40) r2 =

(
4M

3π(f2 + (1− f)2)

)1/3

.

It is important to observe that the relationship (39) between chemical potential and size is
not monotonic. In particular, µ∞(M) has a local minimum corresponding to outer radius

(41) rmin =

(
6(σABf

−1/3 + σBSf
−1)

α(2f2/3 + f5/3 − 3f)

)
.

2.4. Multiple bubble equilibria. Another important morphological class is one where all A-
and B− subdomains are adjacent to the solvent phase. We call these bubble configurations, and
they are commonly observed in simulations where the monomer volume fraction is ≈ 1/2 (see,
e.g. figure 4).

The simplest of these structures is the two-domain bubble. In the absence of the polymer
energy term (i.e. α = 0), equilibria solve a well-known minimal surface problem. The solution
is geometrically simple: interfaces are two parts of a sphere, joined by a planar surface (this was
conjectured in [51] and proved in [52]). Ren and Wei [40] showed that this solution may be used
as a basis for continuation to nonzero polymer energy α > 0.

Our interest is in obtaining quantitative information about solutions to (19-22), and numerical
continuation in the size parameter was implemented. This was done by first finding a single
equilibrium along a branch of a particular morphological class by gradient descent dynamics
(5), and then adiabatically increasing and decreasing the total integral of Ψ. The corresponding
values of µ are determined by finding ∂W/∂Ψ away from diffuse interfaces.

Figure 1 shows the results of the computation for the case σAB = σBS = σSA = 1 and
f = 0.5, along with the analytical results of the previous section for micelle equilibria. The ap-
parent discontinuity in the derivative of µ∞(M) suggests that a symmetry breaking bifurcation
is encountered. This corresponds to a morphological transition where the AB-interfaces become
non-planar as size increases. Except for small particles, there is a distinct ordering among mor-
phological classes, where the three-bubble configurations generally have lower chemical potential
than the two-bubble and micelle configurations.

The situation for equal surface energies but asymmetric volume fraction f = 0.35 was also
investigated. In this case, numerical continuation was used to compute two-bubble configura-
tions, along with their respective chemical potentials µ∞(M). The results of this computation,
along with the analytical micelle results, are shown in figure 2. As two bubble configurations
become larger, the minority phase domain becomes elongated and is mostly encapsulated by the
majority phase. This continues until the minority phase domain breaks into two domains (far
right depiction in figure 5). In contrast to the case of symmetric volume fraction, the chemical
potential for the micelle branch is generally smaller than those for two bubbles.
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Figure 1. The relationship between µ∞ and size M for bubble morphologies
with two (solid/blue) and three (dashed/red) domains. Some representative equi-
librium configurations are displayed along each graph. For comparison, the rela-
tionship for micelles is also shown (dash-dot/black). The surface energies were
all set to one and the volume fraction was f = 0.5.

3. Competition via mass diffusion

When there is more than one equilibrium domain configuration in a system, differences in
chemical potential may drive mass diffusion, resulting in dynamic evolution of particles them-
selves. This idea can be made precise by extending classical LSW theory [53, 54] to the present
model. In this framework, a separation of length scales is assumed between the inter-domain
spacing and the characteristic width of domains. In addition, it is supposed that equilibrium
domain configurations evolve adiabatically: the influence of diffusion between particles is slow
compared to the timescale of relaxation to a new equilibrium configuration. The relaxation rate
can in principle be identified by linearization of the dynamic equations and finding the smallest
(i.e. slowest) eigenvalue. This spectral problem has been carried out for certain symmetric con-
figurations [27], but is in general complicated to characterize. It is also possible that diffusive
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Figure 2. The relationship between chemical potential µ∞ and size M for bub-
ble morphologies with two (solid/blue) in the case of unequal volume fraction
f = 0.35, with representative equilibria displayed along the graph. For compari-
son, the relationship for micelles is also shown (dash-dot/black).

interaction might drive morphological changes (see section 5.1), either through size evolution or
coalescence. These effects are not incorporated in what follows.

3.1. The small volume fraction limit. Suppose that the system contains multiple equilibrium
domains Ωi = (ΩAi,ΩBi), i = 1, 2, ..., N , with centers of mass xi and sizes Mi (superscripts
will be used to index multiple vector or tensor quantities, and subscripts will only be used for
components). Each particle domain configuration is assumed to be in a morphological class Qi,
and that small changes in size will adiabatically result in configurational changes within the class
Qi. The chemical potential associated with each equilibrium will be labelled µ∞(Mi;Qi).

We consider a system domain Ω0 which is large but finite. For simplicity, this is taken to be
a large rectangular box endowed with periodic boundary conditions. Letting ε� 1 be the ratio
of domain width to inter-domain separation, a scaled coordinate y = εx is introduced so that
the scaled centers of mass yi = εxi are O(1) apart. The solution away from the Ωi regions is
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expanded µ(y) = µ0(y) + εµ1(y) + . . .. It is found µ0 is a constant, and µ1 solves

(42) ∆µ1 = 0, y ∈ Ω0/{y1,y2, ...,yn}
subject to periodic boundary conditions. In general, µ1 has singular behavior as y → yi, which
will be determined.

Near the domain Ωi, there is a boundary layer whose solution is written in terms of the unscaled
coordinate x. Note that although x is finite in the original problem, the boundary layer solutions
are sought in the unbounded domain x ∈ R3. Since the domain boundary configurations ∂Ωi

are exactly of equilibrium shape, the fields µ and ν inside Ωi are completely determined by the
solution of (19,20,22). In particular, µ = µ∞(Mi;Qi) on the S-phase boundaries ∂ΩS

i . The
leading order boundary layer problem satisfies ∆µ = 0 and matching to the outer solution
gives limx→∞ µ(x) = µ0. The solution to this problem may be obtained as µ = (µ∞(Mi;Qi) −
µ0)U(y) + µ0 where U solves

∆U = 0, U = 1 on ∂ΩS
i , U(∞) = 0.(43)

This is a standard problem in potential theory and admits a unique solution which behaves as
U ∼ Ci/|y| for |y| → ∞. The so-called electrostatic capacity Ci is a function of the boundary
geometry and may be written

(44) Ci =
1

4π

∫
∂ΩS

i

∂U/∂n dx,

where the normal to the interface is directed outward.
Returning to the outer solution, it follows that

(45) µ1 ∼ Ci(µ∞(Mi;Qi))− µ0)/|y − yi|, y → yi.

Defining the modified Green’s function G(y) as solving the problem

(46) ∆G(y) = −δ(y) + 1/|Ω0|,
it follows that (up to an additive constant)

(47) µ1 =
N∑
i=1

Ci(µ∞(Mi;Qi))− µ0)G(y − yi).

Solvability of the Laplace equation requires

(48)

N∑
i=1

Ci(µ∞(Mi;Qi))− µ0) = 0,

or

(49) µ0 =

∑N
i=1Ciµ∞(Mi;Qi)∑N

i=1Ci
.

The evolution of the parameter M of each particle can now be determined. Using the second
interface velocity condition in (11),

(50)
dMi

dt
=

∫
∂ΩS

i

Vn[Ψ] dx = −
∫
∂ΩS

i

[∂µ/∂n] dx = 4πCi

(
µ0 − µ∞(Mi;Qi)

)
.

In writing this, the normal to the interface and jump [] across the interface are both directed
outward.

Equations (49) and (50) give a coupled system for the evolution of Mi. The mean field µ0 can
be interpreted as a weighted average of chemical potentials associated with each particle. Then
(50) says that particles with lower chemical potential will grow at the expense of those with



EVOLUTION AND COMPETITION OF BLOCK COPOLYMER NANOPARTICLES 11

larger chemical potential; this is precisely the same conclusion as in classical Ostwald ripening
arising from binary phase segregation. The novelty here lies is the fact that µ∞ is not necessarily
monotonically dependent on size, and the dependence also varies from one morphological class
to another. This allows for a wider variety of phenomena which are investigated later on.

Based on the computations of the relation µ∞(M) given in sections 2.3 and 2.4, predictions
of evolution among competing structures can be made. In the case of equal surface energies and
symmetric monomer volume fractions, µ∞ is monotonically decreasing within the two- and three-
bubble morphological classes (see figure 1). This means that larger particles will out-compete
smaller ones. In addition, for particles of large enough size, the three-bubble morphology is
favored over two bubble and micelle configurations. Numerical experiments in section 5.1 are
consistent with this prediction.

For the case of asymmetric volume fractions, the computations of section 2.4 show that micelles
should generally be favored over two bubble structures. In addition, the equilibrium chemical
potential associated with the micelle morphology is not monotonic. This means that larger
micelles might not necessarily grow at the expense of smaller ones, and ones with sizes near the
minimum of the µ∞ curve should be favored. On the other hand, it will be shown that particles
are not necessarily driven to the size corresponding to minimum itself.

3.2. Multiple particle equilibria and their stability. The dynamics specified by (49-50)
may either drive individual particles to extinction (where M goes to zero), or to a situation
where many particles coexist. From (50), the latter case is characterized by equality of chemical
potentials

(51) µ(Mi;Qi) = µ0, i = 1, 2, . . . , N.

The system (49 - 50) has an energy

(52) E =

N∑
i=1

Ei(Mi), Ei(Mi) ≡
∫ Mi

0
µ∞(M ′;Qi) dM

′.

Using (49 - 50), it is straightforward to show that dE/dt ≤ 0. In addition, critical points of (52)

subject to fixed total mass
∑N

i=1Mi yield (51), where µ0 is the Lagrange multiplier.
Stability of critical points may be investigated by studying the second variation of E given by

the quadratic form

(53) B(M ′1,M
′
2, . . . ,M

′
N ) =

N∑
i=1

λiM
′2
i , λi ≡

∂µ∞
∂M

(Mi;Qi),

restricted to the subspace of mass conserving perturbations

(54)
N∑
i=1

M ′i = 0.

We say an equilibrium of (49 - 50) is stable if B(M ′1,M
′
2, . . . ,M

′
N ) > 0 for all nonzero perturba-

tions satisfying (54). Stability can be completely characterized by the derivatives λi of chemical
potentials:

Proposition 1. An equilibrium of (49 - 50) is stable if and only if either
(1) λi > 0 for all i=1,2,. . . ,N, or (2) there is exactly one k ∈ {1, 2, . . . , N} with λk ≤ 0 and

(55) |λk| < λ, λ ≡

∑
i 6=k

λ−1
i

−1

.
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The proof of this depends on the following result.

Lemma 1. Let dj > 0. The minimum of B̃ =
∑Ñ

i=1 div
2
i subject to the constraint

(56)
Ñ∑
j=1

vi = 1

is equal to

(57) d =

 Ñ∑
i=1

d−1
i

−1

,

and is uniquely obtained where vi = d/di.

Proof. The quadratic form B̃ is convex on the affine set given by (56), and therefore has a unique
minimum, which solves divi = L for some Lagrange multiplier L. Summing over i and using
(56) gives L = d. Then the minimum value of B is

(58)

Ñ∑
i=1

di(d/di)
2 = d.

�

Proof of proposition 1. Stability is obvious in the case of (1). If there are two distinct indices
l,m ∈ {1, 2, . . . , N} with λl ≤ 0 and λm ≤ 0, then for

(59) M ′i =


+1 i = l,

−1 i = m,

0 i 6= l,m,

B(M ′1,M
′
2, . . . ,M

′
N ) ≤ 0. Finally consider case (2) where only λk ≤ 0. For stability, it suffices

to consider perturbations with M ′k = −1 and

(60)
∑
i 6=k

M ′i = 1.

If (55) holds, the lemma shows that

(61) B(M ′1,M
′
2, . . . ,M

′
N ) ≥ λk + λ > 0.

Conversely, if (55) does not hold, then for the perturbation

(62) M ′i =

{
−1 i = k,

λ/λi i 6= k,

one has

(63) B(M ′1,M
′
2, . . . ,M

′
N ) = λk + λ ≤ 0.

For domains within the same morphological class, the previous result indicates the possibility
of a stable collection of particles provided they have identical size M and µ′∞(M) > 0. The
alternative is instability, where slightly larger particles grow at the expense of slightly smaller
ones. Note that this process may re-stabilize once small particles are eliminated and enough
additional mass has been accreted onto larger ones so that µ′∞(M) > 0. Additionally, note that
coexistence of different morphological classes is not ruled out; there may be cases where there is
equality along the µ∞(M) curves, and simultaneously µ′∞ > 0 for each class at these values.
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3.3. Kinetic limit. In the case of large particle number, the evolution of the size distribution
function η = η(M, t) may be studied by a kinetic equation. For illustration purposes, we con-
sider only the interaction among a chosen morphological class with chemical potential µ∞(M)
and capacity C(M). The resulting Smoluchowski-type kinetic equation corresponding to the
dynamics (50) is [55,56]

(64) ∂tη + 4π∂M

(
η(M, t)C(M)[µ0 − µ∞(M)]

)
= 0, µ0 =

∫∞
0 η(M, t)C(M)µ∞(M) dM∫∞

0 η(M, t)C(M) dM
.

The capacity C(M) is defined in (44), using the domain configuration within the morphological
class having size M .

The total free energy for a given size distribution is

(65) E =

∫ ∞
0

η(M, t)e(M)dM, e(M) ≡
∫ M

0
µ∞(M ′)dM ′.

Note that (32) implies that e(M) is just the energy of the equilibrium domain with size M .
Provided that η decays sufficiently fast as M →∞, the integral in (65) will be finite.

It is straightforward to compute

(66)
dE

dt
=

∫ ∞
0

e(M)ηt dM = 4π

∫ ∞
0

η(M, t)C(M)(µ2
0 − µ2

∞)dM.

The dissipation of energy (65) can be seen by first noting that Jensen’s inequality implies

(67) µ2
0 =

(∫∞
0 η(M, t)C(M)µ∞(M)dM∫∞

0 η(M, t)C(M)dM

)2

≤
∫∞

0 η(M, t)C(M)µ2
∞(M)dM∫∞

0 η(M, t)C(M)dM
.

This can be combined with (66) to obtain dE/dt ≤ 0. Since equality in (67) only occurs when
η(M, t) is a point distribution, it follows that the only time independent solutions of (64) are
where η(M, t) = δ(M −M∗) for any M∗ > 0.

To illustrate the dependence of M∗ on initial conditions, simulations of (64) are shown in
figure 3. The case of spherical micelles was used, where M can be scaled so that C(M) = R

and µ∞ = 1/R + R2 with R = M1/3. The above proposition implies that the ensemble will be
stable for M > 1/2. The initial value of η was chosen to be a Gaussian whose peak was either at
M = 0.1 or M = 0.45. In both cases, η evolves toward a point distribution η = δ(M −M∗), but
M∗ ≈ 0.63 in the former case and M∗ ≈ 0.57 in the latter. We note that the initial condition
dependence provides a mechanism for controlling the final size, which is important in practical
applications [22].

4. Rigid body dynamics

In situations where multiple particles coexist, weaker interaction effects come into play at
late stages. These are driven by inhomogeneities in the other chemical potential field ν, which
generically has a dipole character for isolated equilibria. Two consequences of this interaction
are identified: (1) rotation is induced by field asymmetry, leading to orientational alignment,
and (2) particles may exhibit translational dynamics so as to reduce dipole interaction energy.
It is found that the latter is a weaker effect than the first, leading to a scenario where nearby
particles align and later experience attraction dynamics.

4.1. Rotational and translational eigenfunctions. For any equilibrium configuration Ω
solving (19-22), the field ν behaves in the far field as

(68) ν ∼ p · x
|x|3

, x→∞,
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Figure 3. Simulation of (64) for distributions with initially small radii (top)
and initially large radii (bottom). Each curve has been scaled so that the integral
is unity. The initial conditions are shown as red/dotted lines. In both cases, the
center of mass moves right initially, and the final result is a point distribution
(not shown), but at a location dependent on the initial condition.

where p is the corresponding dipole moment. Provided p 6= 0, the associated direction d = p/|p|
can be used as a parameter describing the orientation of the configuration.

The symmetry of the underlying model (at least for infinite system domain) means that there
is a continuous family of equilibria Ω(d), d ∈ S2, which are identical up to rotations about
x = 0. For fixed d, the tangent plane to the unit sphere at d is spanned by arbitrarily chosen
orthonormal vectors e1, e2. Rotation about the axis rk = d × ek gives infinitesimal interface
displacements given by

(69) Ω̃R
k = (rk × x) · n.

The corresponding perturbation of ν is

(70) νRk (x;d) = ∇ν · (rk × x).
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It is straightforward to check that Ω̃R
k and νRk solve the the linearized equilibrium problem

∆νRk = 0, x ∈ ΩS ∪ ΩA ∪ ΩB,(71)

νRk [Φ0] =
{

(−∂ν/∂n) + σI(∆s + κ2
1 + κ2

2)
}

Ω̃R
k , x ∈ ∂ΩI(72) [

∂νRk /∂n+ (∂2ν/∂n2)Ω̃R
k

]
= 0, x ∈ ∂ΩI(73) ∑

I∈{AB,BS,SA}

σI∇sΩ̃R
k (I) = 0, x ∈ ∂∂Ω.(74)

Here ∆s and ∇s are the surface Laplacian and gradient, and κ1,2 are the principal curvatures.

The notation Ω̃R
k (I) refers to the limit as the triple line is approached from interface I. Equation

(73) may be simplified by noting that in a coordinate system fitted to the boundary ∂Ω,

(75) ∆ν = νrr + κνr + ∆sν = Φ0,

where r is the normal coordinate. Using (21), the jump of this quantity across the interface is

(76) [∆ν] = [νrr] + κ[νr] + [∆sν] = [νrr],

so that (73) can be written

(77)
[
∂νRk /∂n

]
= −[Φ0]Ω̃R

k .

Condition (74) can also be simplified by writing ∇sΩ̃R
k = (∇sΩ̃R

k · t)t + (∇sΩ̃R
k · l)l and taking

the cross product with l to obtain

(78)
∑

I∈{AB,BS,SA}

σI(∇sΩ̃R
k · tI)nI = 0, x ∈ ∂∂Ω.

The underlying translational symmetry implies that the linearized problem (71-74) also has

solutions νTk = ∂ν/∂xk, k = 1, 2, 3, where the corresponding interface displacements are Ω̃T
k =

nk. Regarding (71-74) as a homogeneous linear system, Ω̃R
k and Ω̃T

k are simply the eigenfunctions
in the kernel of the linearized operator, and will be utilized in a solvability argument. These
calculations require the far field behavior of the field ν associated with the eigenfunctions, which
using (68) and (70) give

(79) νRk ∼
|p|ek · x
|x|3

, x→∞,

and

(80) νTk ∼
pk|x|2 − 3(p · x)xk

|x|5
, x→∞,

4.2. Rotation dynamics. We will now show that the collective effect of dipole fields generated
by equilibrium configurations induces particle rotation. This is done by extending the analysis
of section 3.1, incorporating higher expansion terms and longer timescales. It is supposed that a
collection of particle domains {Ωi}, identical up to rotation, have reached diffusive equilibrium
in the sense that they have a common value of µ∞. Beyond this point, µ remains constant and
is suppressed in what follows.

After expanding ν in powers of ε, it is found that ν0 just the equilibrium value, and

(81) ν0 ∼
pi · x
|x|3

, x→∞.
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The corresponding orientations are di(T ), where T = ε3t is a slow timescale. The interface

displacements (relative to the equilibrium configuration) are also expanded as Ω̃ = εΩ̃1 + ε2Ω̃2 +

ε3Ω̃3 + ε4Ω̃4 + . . ..
The expansion using the outer coordinate is ν(y) = ε2ν2(y) + ε3ν3(y) + . . ., where the first

nontrivial order solves ∆ν2(y) = 0. By matching,

(82) ν2(y) ∼ p
i · (y − yi)
|y − yi|3

, y → yi.

The solution using the Green’s function defined by (46) is

(83) ν2(y) = −4π
N∑
i=1

∇G(y − yi) · pi.

Expanding for y ≈ yi leads to

ν2(y) ∼p
i · (y − yi)
|y − yi|3

− 4π
N∑

j=1,j 6=i
∇G(yi − yj) · pj − 4π

N∑
j=1,j 6=i

∇2G(yi − yj) · pj · (y − yi)

− 2π
N∑

j=1,j 6=i
∇3G(yi − yj) · pj · (y − yi) · (y − yi), y → yi.

(84)

Matching back to the inner expansion means that

(85) ν3(x) ∼ −4π
N∑

j=1,j 6=i
∇2G(yi − yj) · pj · x ≡ πi · x, x→∞.

For the inner expansion, it is found that νj(x) = 0 for j = 1, 2, and the problem at O(ε3) is

∆ν3 = 0, x ∈ ΩS ∪ ΩA ∪ ΩB,(86)

ν3 [Φ0] =
{

(−∂ν0/∂n) + σI(∆s + κ2
1 + κ2

2)
}

Ω3, x ∈ ∂ΩI ,(87)

[Φ0]
dΩ

dt
= −

[
∂ν3/∂n+ (∂2ν0/∂n

2)Ω̃R
k

]
, x ∈ ∂ΩI ,(88) ∑

I∈{AB,BS,SA}

σI∇sΩ3(I) = 0, x ∈ ∂∂Ω,(89)

supplemented with the far field condition (85). The interface motion induced by rotation is

(90)
dΩ

dt
≡
(
ddi

dT
· e1

)
Ω̃R

1 +

(
ddi

dT
· e2

)
Ω̃R

2 .

Solvability of the linear system (86-89) proceeds by multiplying (86) by νRk = νRk (x;di),
integrating over a ball B(r) of radius r, and taking r →∞. This gives

(91)

∫
∂Ω
νRk [∂ν3/∂n]− ν3[∂νRk /∂n]dx+

∫
∂B(r)

νRk (∂ν3/∂n)− ν3(∂νRk /∂n)dx = 0

by Green’s identity. Evaluation of the latter integral as r →∞ uses (79) and (85), giving

(92)

∫
∂B(r)

νRk (∂ν3/∂n)− ν3(∂νRk /∂n)dx = 4π|pi|(πi · ek).
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The first integral in (91) can be written∫
∂Ω
νRk [∂ν3/∂n]− ν3[∂νRk /∂n]dx = −

∫
∂Ω

[Φ0]
dΩ

dt
νRk dx− I,(93)

I ≡
∫
∂Ω

[Φ0](νRk Ω3 − ν3Ω̃R
k ) dx.(94)

The integral term I can be shown to vanish. Using (77) and (88), this term can be written as

I =

∫
∂Ω
σ(Ω̃R

k ∆sΩ3 − Ω3∆sΩ̃
R
k )dx,(95)

with σ = σI on each corresponding interface in ∂Ω. Application of Green’s identity to manifolds
in ∂Ω means that (95) reduces to integrals along three phase lines

I =

∫
∂∂Ω

∑
I∈{AB,BS,SA}

σI

[
(∇sΩ3(I) · tI)Ω̃R

k (I)− (∇sΩ̃R
k (I) · tI)Ω3(I)

]
dx.(96)

Conditions (26),(78) and (89) imply

(97)
∑

I∈{AB,BS,SA}

σI(∇sΩ3(I) · tI)Ω̃R
k (I) =

∑
I∈{AB,BS,SA}

σI(∇sΩ3(I) · tI)q · nI = 0.

A similar expression holds for the second term in (96), which means that I is zero as claimed.
The other integral on the right hand side in (93) can be written using (77) as

−
∫
∂Ω

[Φ0]
dΩ

dT
νRk dx =

2∑
j=1

(
ddi

dT
· ej
)∫

∂Ω
[∂νRj /∂n]νRk dx(98)

= −
2∑
j=1

(
ddi

dT
· ej
)∫

R3

∇νRj · ∇νRk dx.(99)

4.3. Alignment effects. Using expressions (92) and (98) in (91), the rotational dynamics may
be written

(100) M iE
ddi

dT
= 4π|pi|Eπi

where Ekj = ekj and

(101) M i
kj =

∫
R3

∇νRj · ∇νRk dx.

Equation (100) can be written in a form independent of the choice of basis vectors e1,2 as

(102)
ddi

dT
= 4π|pi|M̃ i

πi,

where the matrix M̃
i

= ET (M i)−1E. Note that both M i and M̃
i

are non-negative definite.
Equation (102) represents an interacting system of particles which rotate in response to their

neighbor’s orientation. This system has a natural dissipated energy

(103) ER =
1

2

N∑
i=1

N∑
j=1,j 6=i

∇2G(yi − yj) · pi · pj .
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Using (102) one has

(104)
dER
dT

= − 1

4π

N∑
i=1

|pi|πi · dd
i

dT
= −

N∑
i=1

|pi|2M̃ i · πi · πi ≤ 0.

For large systems where boundary effects are negligible, the Green’s function is well approx-
imated by the free-space Green’s function G ≈ −1/(4π|x|) which allows (103) to be written
as

(105) ER ≈
1

8π

N∑
i=1

N∑
j=1,j 6=i

pi · pj − 3(pi ·∆ij)(pj ·∆ij)

|yi − yj |3
, ∆ij ≡ yi − yj

|yi − yj |
.

Since the interaction has a strongly decaying character, it is illuminating to consider a system
with only two particles. In this case, energy is proportional to p1 · p2 − 3(p1 ·∆12)(p2 ·∆12).
Subject to fixed values of |pi| and |pj |, it is straightforward to check that there are two global
minima given by p1 = p2 = ±∆12. In other words, the dipole moments preferentially align with
the displacement vector between particles. This effect is tested numerically in section 5.2.

4.4. Translation dynamics. Using (84), matching to the inner expansion provides the far field
behavior

(106) ν4(x) ∼ −2π

N∑
j=1,j 6=i

∇3G(yi − yj) · pj · x · x ≡ Πi · x · x, x→ xi.

On the very slow timescale T2 = ε5t, the rotational dynamics has equilibrated, but centers of
mass yi = yi(T2) may be influenced by the far field behavior of ν4. This order in the expansion
solves a system similar to (86-89), with (88) replaced by

[Φ0]
dΩ

dT2
= −

[
∂ν4/∂n+ (∂2ν0/∂n

2)Ω4

]
,

dΩ

dT2
≡ −

3∑
k=1

νTk ·
dyik
dT2

.(107)

The solvability argument is essentially identical to that above. After multiplying the Laplace
equation by eigenfunctions νTk , one arrives at

(108)

∫
∂Ω
νTk [∂ν4/∂n]− ν4[∂νTk /∂n]dx+

∫
∂B(r)

νTk (∂ν4/∂n)− ν4(∂νTk /∂n)dx = 0.

In this case, the latter integral can be computed using (80) and (106), giving

(109)

∫
∂B(r)

νTk (∂ν4/∂n)− ν4(∂νTk /∂n)dx ∼ −2π(Πipi)k, r →∞.

The first integral in (108) uses a computation analogous to (93) and (98), leading to

(110)

∫
∂Ω
νTk [∂ν4/∂n]− ν4[∂νTk /∂n]dx =

3∑
l=1

dyil
dT2

∫
R3

∇νTk · ∇νTl dx.

Combining the previous two expressions, the translation dynamics can be written compactly as

(111)
dyi

dT2
= 2π(M i)−1Πipi, Mkl =

∫
R3

∇νTk · ∇νTl dx.

The energy defined in (103) is also dissipated by the dynamics (111), since

(112)
dER
dT2

= − 1

2π

N∑
i=1

Πipi
dyi

dT2
= −

N∑
i=1

(M−1Πipi) · (Πipi) ≤ 0.
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Figure 4. Three dimensional simulations at times t = 280, 3.5× 103, 7.3× 104.
The surface energy parameters are all set to one, and the volume fraction parame-
ter was f = 0.5. The final state (not shown) is a single multilayered nanoparticle.

Figure 5. Three dimensional simulations at times t = 700, 4.2× 103, 2.0× 104.
The parameters are the same as in figure 4, except f = 0.35. After a ripening
phase, all micelles equilibrate to the same radius (far right).

It is again instructive to consider the interaction among only two particles. Since orientational
alignment is achieved on a faster timescale, the terms in (105) are proportional to −|y1 − y2|3.
This means that there is an energetic preference for aligned particles to attract, which will be
illustrated in section 5.2.

5. Numerical simulation

This section illustrates and confirms many of the preceding analytical results using numerical
computation of the diffuse interface model (5). The numerical methods employed use a spectral
spatial discretization and guarantee that the discrete version of the energy (2) is dissipated. The
other details are fully described elsewhere [57]. For simplicity, the surface energy parameters
were all chosen to be unity, with exception of the computations of section 5.2.

5.1. Competitive dynamics. Simulations with a computational grid of size 2563 were con-
ducted to observe the formation and interaction of nanoparticle structures. In order to generate
spatially distinct domains, initial conditions were chosen to represent small randomly placed
spherical patches. To do this, Ψ was set to 1/2 within these patches, and was set to zero out-
side. The variable Φ was chosen to be small and random to initiate phase separation. When
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Figure 6. Simulation of late-stage interaction dynamics, where the arrows indi-
cate the instantaneous dynamics. Initially particles rotate (left) until they align
(left middle), migrate toward each other (right middle) until they merge (right).

patches were chosen to be too small, they failed to nucleate domains of heterogeneous polymer
composition, and subsequently vanished. Trial and error was used to set the patch size to be
just large enough so this does not occur.

Figure 4 shows the evolution in the case where A-monomer volume fraction was f = 0.5.
Initially, mostly two-bubble domains are formed, and compete via Ostwald ripening as predicted.
Structures with more than two subdomains were continuously created either by morphological
transitions or coalescence events, and ultimately outcompete two-bubble domains. This process
continues until just a single multilayered nanoparticle remains.

Figure 5 shows the evolution with the same parameters, except the monomer volume fraction
was f = 0.35 instead. In this case, particles take the form of two-layered micelles initially.
Ripening of domain structures is observed for a while, but this eventually halts once a critical
size is reached, leaving many equally-sized micelles.

5.2. Rotation and translation. The theoretical predictions of section 4 indicate that late
stage dynamics of coexisting particles without radial symmetry is characterized by rotational
alignment and subsequent pairwise attraction. To demonstrate this, two-bubble particles are
natural candidates. With equal surface energies, however, we have seen these will compete by
Ostwald ripening and no late stage coexistence is possible. We have found, on the other hand,
that the choice of surface energy parameters σAB = 2 and σAS = σBS = 1 (with f = 0.5) does
yield a stable collection of two-bubble particles.

A simple numerical illustration confirms the qualitative nature of the theoretical findings.
Initial conditions were chosen to be two spherical domains, each subdivided along a diameter
into A- and B-phase subdomains where the orientation of each particle is different. These regions
quickly develop into two-bubble domain structures, each of the same size, and then exhibit rigid
body motion.

The results are shown in figure 6. After the two structures have obtained their equilibrium
shape, they each rotate, largely without any other movement, until both axes of symmetry are
aligned with a line drawn between particles. The particles then drift toward one another, and
finally merge, creating a four-domain bubble.

5.3. Behavior in two dimensions and dynamic scaling. To acquire meaningful statistics of
dynamical scaling phenomena, computations with a very large number of particles are required.
Unfortunately, this regime is (at least presently) numerically inaccessible in three dimensions.
On the other hand, simulations in two dimensions reveal phenomena similar to those in three,
and allow for much larger system sizes to be investigated.
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Figure 7. Relationship between equilibrium chemical potential µ∞ and size pa-
rameter M for numerous two dimensional equilibria. A nonlinear least squares
fit of the form µ = A + Brγ is shown, where A = 0.093, B = 0.85, γ = −0.35.
Domain patterns for several of the computed equilibria are also shown.

Figure 8. Simulation for equal surface energies and volume parameter f =
0.5 at times t = 780, 6.9 × 103, 2.6 × 104, 8.9 × 104. Particles undergo Ostwald
ripening as well as encounter morphological transitions as a result of instability
and coalescence.

Although simple morphologies analogous to micelles and multiple bubbles are seen in two
dimensions as well, it is also feasible to compute a much wider variety of complex equilibria.
To illustrate this, steady states were found using the gradient descent dynamics (5), with initial
conditions where Ψ = 1/2 on a circular patch of adjustable radius, and where Φ was chosen
to be small and random. In addition, surface energies were all set to unity and the volume
fraction parameter was f = 0.5. The relationship µ∞(M) was computed for numerous particles
of different sizes as in section 2.4, setting µ∞ = ∂W/∂Ψ far away from interfaces, and finding M
from numerical integration of Ψ within the polymer domain region. Figure 7 shows the computed
relationship, along with a nonlinear least squares fit of the data and plots of representative
equilibria. Consistent with the conjecture in section 2.2, subdomains appear to have a distinct
characteristic width.
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Figure 9. Simulation at times t = 440, 2.0×103, 1.3×104, 1.20×106, where the
parameters are like figure 8 except the polymer volume fraction was f = 0.35.

Figure 10. Left: average particle radius as a function of time for the simulation
in figure 8. The dashed line corresponds to a linear regression fit with slope
≈ 0.33. Right: average radius as a function of time for the case of unequal
composition as in figure 9 (dotted). The dashed line is for reference and has slope
1/5.

Dynamics of a large number of particles was also investigated, using a computational grid of
size 40482. The behavior with polymer volume fraction f = 0.5 and all surface energies set to
one is shown in figure 8. As in three dimensions, phase segregation initially produces two-bubble
domains. As ripening ensues, multiple bubble structures appear. The final result (not shown) is
a single large particle with a lamellar substructure. Asymmetric mixtures with volume fraction
f = 0.35 and equal surface energies were also investigated (figure 9). As expected, ripening
behavior eventually gives way to equilibration of micelle radii.

To quantify dynamic scaling, statistics on domain size were computed. Polymer-rich domains
were identified by finding regions where the order parameter Ψ > 0.1, and their effective radius
was then found by computing the square root of the corresponding area. The average radius was
computed at each simulation time to determine scaling or non-scaling of domain sizes.

Figure 10 shows the average radius R(t) as a function of time for the simulations in figures 8
and 9. The case of equal surface energies (left panel) demonstrates fairly consistent power-law
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scaling for times < 105, at which point the number of particles is less than 10 and they have
acquired complicated morphologies. Within this time frame, a power law fit R ∼ tα was found
with α = 0.33. Statistics for the other scenario for which ripening halts are shown in figure
10(right). In this case, there is a transient regime where scaling of radius is consistent with the

t1/5-power law.

6. Discussion and Conclusions

This paper has explored a broad class of dynamical phenomena in multiphase density func-
tional models. This includes formation of topologically diverse equilibria, multi-particle stability
and instability, and interaction leading to rotation and translation. Disparate length- and time-
scales were exploited to explicitly calculate the evolution of a reduced set of configurational
degrees of freedom. These simplified models demonstrate qualitative aspects of nanoparticle self
assembly, such as the preference of certain morphologies and sizes. They also show how collective
effects may influence the overall trajectory of pattern development.

Some surprising features of the dynamics were found, including the possibility of stable multi-
particle assemblies and orientational alignment. These effects are important to the processing
of block copolymer materials, where control over final microstructure is desirable [18,58].

Our computational results exhibiting a wide class of possible equilibrium morphologies run
parallel to Avalos et al. [9]. They utilize a similar system of coupled Cahn-Hilliard-type equations,
but with phenomenological parameters in the bulk potential. Both their framework and ours
appear capable of reproducing experimentally observed structures.

The asymptotic analysis used herein extends the classical LSW approximation for binary
phase mixtures. Previously, two phase systems with nonlocal repulsion have also been studied
with this approach [56, 59, 60]. The main finding of these investigations is that nonlocal energy
terms stabilize ripening behavior and lead to patterned domain assemblies. In contrast, there is
no long-range order at late stages here, even when ripening effects halt.

Competing morphologies in an amphiphilic system were studied by Dai and Promislow [61]
(this is different from our system where A and B phases are hydrophobic). In their case, spherical
and toroidal morphologies are formed. Like our system, they compete diffusively by differences
in chemical potential, leading to either extinction of spherical structures or coexistence of both
types.

Recently, Wang at al. [62] have studied a system similar to ours, but with nonlocal inter-
action among all three phases. They observe assemblies of two-bubble domain patterns which
eventually establish both spatial and nematic (orientationally aligned) order. In contrast to our
model, however, the nonlocal repulsion with the third phase modifies the domain interaction and
prevents attraction and coalescence. This results is a final state comprised of a lattice of aligned
domains patterns.

While our computations are limited to the choice of equal surface energies, it is expected
that these parameters will also heavily influence preferred morphology. A complete taxonomy
of morphological classes and the associated phase diagram would be valuable. This is a compu-
tationally challenging undertaking, since there are numerous physical parameters that influence
equilibrium behavior. Combined with the theoretical results established here, this would be an
important step toward the broad goal of engineering spontaneously assembled block copolymer
structures.
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