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the essence of mathematics lies precisely in its freedom.

Georg Cantor [Ewald, 2005]

This paper summarizes the key ideas of my theory from my papers [Joshi, 2021a, 2023a,
2022a] which provide, with proofs, a clear approach to understanding the claims of [Mochizuki,
2021a,b,c,d]. It includes a discussion of the role of classical Teichmuller Theory in under-
standing Mochizuki’s Corollary 3.12 and also in understanding the proof of geometric Szpiro
inequality (§ 1.10–§ 1.21).

This paper addresses Mochizuki’s and Scholze’s comments on my work (in § 1.6); a discus-
sion of [Mochizuki, 2022] (in § 1.7) and also provides additional mathematical evidence against
the widely believed objections of [Scholze and Stix, 2018] regarding [Mochizuki, 2021a,b,c,d]
(in § 1.8).

Conclusion is in § 1.25.

§ 1.1 Since the appearance of [Mochizuki, 2021a,b,c,d] papers online in 2012, Mochizuki’s
work has generated a significant amount of excitement, debates and controversies. One must
recognize that there are many reasons for this. A finely tuned presentation of the key ideas
of the proof could have averted some of the controversies. However since the appearance of
[Scholze and Stix, 2018] there are now two factions, with one believing the validity of his work
while the other denying it. The publication of [Mochizuki, 2021a,b,c,d] has not abated this
debate. The key contentious issue is the validity of [Mochizuki, 2021c, Corollary 3.12]. The
two factions have mostly argued without letting the mathematics speak for itself with abundant
clarity. For my discussion of mathematical facts in this context see [Joshi, 2022a, 2021b].

Let me remind the readers that a mathematical assertion may not be falsified by any math-
ematical diktats but only by a mathematical counter example. For the record, to date, no math-
ematical counter example to the said corollary has been published.

§ 1.2 My position on [Mochizuki, 2021a,b,c,d], from the time I got interested in the Spring
of 2018, has been that I can make a better assessment of its claims provided that I understand
exactly what its claims are and the precise mechanism by which the claims may be proved. I
believe that now I do have such an insight into his work and I have documented my ideas with
proofs in [Joshi, 2019, 2020a,b, 2021a, 2023a, 2021b, 2023b]. Let me add that [Joshi, 2023b]
contains a ‘Rosetta Stone’ for translating between my theory and [Mochizuki, 2021a,b,c].

§ 1.3 The central difficulty with [Mochizuki, 2021a,b,c] and [Mochizuki, 2021c, Corollary
3.12] specifically is how to make sense of the four central assertions it rests on:
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(1) The existence of distinct arithmetic holomorphic structures. This breaks down into two
related but also separate portions:

(a) the existence of distinctly labeled isomorphs of (Π ↠ G) where Π is the tempered
fundamental group of a fixed hyperbolic curve over a fixed p-adic field E, G =
GE is the absolute Galois group of E, and Π ↠ G is a continuous surjection of
topological groups. In [Mochizuki, 2021a,b,c] parlance, each isomorph or instance
of this pair is called an étale-like picture.

(b) The second portion is subtler: it consists of the value group of an algebraic closure
of the p-adic field fixed in part (a) i.e. the value group

∣∣Q̄p

∣∣. The theory requires
distinct instances of such value groups (even if an instance of (Π ↠ G) is held
fixed), with some identifications which allows us to compare valuations in some
uniform way. In [Mochizuki, 2021a,b,c] each instance of this monoid datum is
called a Frobenius-like picture.

(2) The existence of Theta-links (specifically Θgau-links).

(3) The existence of log-links and log-links.

(4) The existence of a suitable group whose action moves around the data in (1), (2) and (3).

§ 1.4 To put it succinctly [Mochizuki, 2021c, Corollary 3.12] is an ‘averaging’ procedure for
functions over the space of data (1), (2) and (3). For a given elliptic curve over a number field,
spaces of such data exist for all the primes of the number field though one works with the
finite set of odd primes of split multiplicative reduction. Here are two examples of functions
of arithmetic interest on the space of data (1), (2), (3): (a) the Tate parameter of an elliptic
curve over a p-adic field, and (b) the values of theta function at a chosen collection of torsion
points (see [Joshi, 2023a] for precise assertions). Because of the existence of the group action
(4) one may start with one data point(s) exhibiting (1), (2) and (3) and consider its orbit under
group in (4) and carry out the averaging procedure over this orbit. Roughly speaking, this is
essentially the strategy of [Mochizuki, 2021c]. So it is crucial that the existence of such data is
convincingly established in the first place.

§ 1.5 My work [Joshi, 2021a, 2022a, 2023a] canonically establishes the existence of data
(1), (2), (3) and (4). This is done by a precise definition of arithmetic holomorphic structures
and the precise demonstration of why they may be so anointed. To be sure, Mochizuki coined
this phrase and his definition of arithmetic holomorphic structure is different from mine, but
I found his definition difficult to work with in clearly establishing the existence of the above
data. On the other hand, my definition of arithmetic holomorphic structure provides arithmetic
holomorphic structures in Mochizuki’s sense [Joshi, 2022a].

The arithmetic Teichmuller space I construct is essentially the space of all arithmetic holo-
morphic structures one may put on X/Qp!

The precise notion of arithmetic holomorphic structure detailed in [Joshi, 2022a] is quite
closely related to Scholze’s Theory of Diamonds [Scholze, 2017]. To put my work [Joshi,
2021a, 2022a] in the most simplistic terms, each arithmetic holomorphic structure provides
a triple (Xan

E , Xan
K , Xan

K → Xan
E ) consisting of Berkovich analytic spaces Xan

E and Xan
K and

a morphism of analytic spaces Xan
K → Xan

E and an untilt, (E ↪→ K,K♭ ≃ F ), of some
perfectoid field F of characteristic p > 0 (as I observe in my papers, the theory must work with
all F even though calculations for the Diophantine inequalities can be performed by taking
F = C♭

p), and this allows me to establish (1) above. Notably I demonstrate in [Joshi, 2021a,
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2022a] that each arithmetic holomorphic structure provides a pair (E ↪→ K) which provides an
instance of Mochizuki’s étale-like picture as the morphism of tempered fundamental groups of
the π1(X

an
K ) ↪→ π1(X

an
E ) ↠ GE (with (Π = π1(X

an
E ) ↠ GE) providing (1a) above). In [Joshi,

2023a] I observe that tilt data (K♭ ≃ F ) provides the value group
∣∣K♭

∣∣ and the isomorphism
K♭ ≃ F provides a way of comparing valuations (of elements of K) in the fixed value group
|F | (i.e. (1b) above). Moreover, tilting i.e. construction of K♭ from K requires working with
pth-powers (i.e. Frobenius lifts and its powers) and hence an arithmetic holomorphic structure
provides, via the (K♭ ≃ F ) portion of the datum, a Frobenius-like picture in the sense of
[Mochizuki, 2021a,b,c]. In particular one has many instances of arithmetically inequivalent
Frobenius-like pictures (an assertion which is needed in [Mochizuki, 2021c]). Existence of
log-links and Theta-Links (i.e (2) and (3)) is detailed in [Joshi, 2023a]. As for (4) the relevant
group and its action is explicated in detail in [Joshi, 2021a, 2022a] and explicitly allows me to
demonstrate how arithmetic holomorphic structures move under this action (a similar assertion
has been made by Mochizuki in [Mochizuki, 2021c, Theorem 3.11]–my version is the precise
version of Mochizuki’s assertion).

§ 1.6 Let me say that I am a deep admirer of the works of Shinichi Mochizuki and Peter
Scholze. But the truth is neither Mochizuki nor Scholze have anticipated that modern p-
adic Hodge Theory as developed by many (including Scholze) has significant ramifications
for [Mochizuki, 2021a,b,c] (as is detailed in my papers [Joshi, 2021a], [Joshi, 2023a], [Joshi,
2021b], [Joshi, 2023b]). My original work is currently the best mathematical (and conceptu-
ally cleaner) approach for proving Mochizuki’s Corollary 3.12 (based on principles laid out by
Mochizuki). In my theory, Mochizki’s work on the abc-conjecture and the theory of perfectoid
fields (due to Scholze and others) are inextricably intertwined in establishing convincing proofs
of the claims of [Mochizuki, 2021a,b,c].

In [Mochizuki, 2022], Mochizuki has alluded to my work as a “fabricated version.” Frankly,
I am puzzled by Mochizuki’s response to my work because he pioneered the use of classical
p-adic Hodge Theory in Anabelian Geometry with remarkable success. In [Joshi, 2019], I
demonstrated how one can algebraize Mochizuki’s idea of keeping multiplicative structures
(i.e. multiplicative monoids) of a ring fixed and deform the ring structure. As a consequence
of [Joshi, 2019] one sees that the theory of perfectoid fields [Scholze, 2012], [Fargues and
Fontaine, 2018] also rest on similar deformations (as is detailed in my papers [Joshi, 2021a],
[Joshi, 2023a], [Joshi, 2021b], [Joshi, 2023b]). [Notably in [Fargues and Fontaine, 2018] and
[Scholze, 2012] the multiplicative monoid Ĝm(OF ) remains fixed.]

My work follows all the rules laid out in [Mochizuki, 2021a,b,c], but arrives at the cen-
tral ideas of [Mochizuki, 2021a,b,c] via [Joshi, 2019], [Joshi, 2020a], [Joshi, 2021a, 2022a].
My work replaces Mochizuki’s awkward formalism completely and provides a clear way of
establishing most of the important claims of [Mochizuki, 2021a,b,c]. This has allowed me to
break the impasse which had been reached in the understanding of Mochizuki’s claims with the
appearance of [Scholze and Stix, 2018].

Scholze has recently said that my work is “linguistic trickery” because of my use of al-
gebraically closed perfectoid fields and has asserted that perfectoid fields have nothing to do
with anabelian geometry. Mochizuki (in 2020) and Mochizuki and Y. Hoshi (in 2021) have
also made an identical assertion. Let me say clearly that this point has been explicitly falsi-
fied in [Joshi, 2022a, 2021a]. As is demonstrated there, algebraically closed perfectoid fields
enter anabelian geometry–more precisely–the theory of tempered fundamental groups (and
hence [Mochizuki, 2021a,b,c,d]) through the role of arbitrary geometric basepoints. Mochizuki
clearly states that unrelated or arbitrary geometric basepoints are required in his theory (see
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[Mochizuki, 2021a, § I3]). So this denial of the role of perfectoid fields in the context of
[Mochizuki, 2021a,b,c] is quite incorrect.

Once this is recognized, assertions such as [Scholze and Stix, 2018, Remark 9] also fall
apart as they require identification of fundamental groups arising from all basepoints. Let me
say why it is important to discuss this issue. Since the appearance of [Scholze and Stix, 2018]
in 2018, [Scholze and Stix, 2018, Remark 9] has been at the foundation for the widely believed
assertion (of Scholze-Stix) that Mochizuki’s strategy is fundamentally unworkable. My work
demonstrates that this is simply not the case.

Just as one may identify fundamental groups of Riemann surfaces of fixed topological type
at the expense of ignoring their complex analytic structures, my work shows that tempered
fundamental groups may be identified at the expense of Berkovich analytic structures (more
precisely arithmetic holomorphic structures). Let it be clear that in [Mochizuki, 2021a,b,c] as
well as in my works, one wants to work with arithmetic holomorphic structures and not with
fundamental groups per se. My discovery (in [Joshi, 2021a, 2022a, 2023a]) is that certain oper-
ation and symmetries permitted by modern p-adic Hodge Theory allow us to change Berkovich
analytic structures (more precisely change arithmetic holomorphic structures) and this drives
the theory of tempered fundamental groups in the context of [Mochizuki, 2021a,b,c]. Readers
may want to recall that Mochizuki’s famous works on anabelian geometry, such as [Mochizuki,
1996, 1999], are driven by classical p-adic Hodge Theory.

§ 1.7 Let me address [Mochizuki, 2022]. I will limit this discussion to its mathematical claims.
My personal reading of [Mochizuki, 2022] is that it tacitly recognizes that the problems many
have had with [Mochizuki, 2021a,b,c,d] are real, and it goes to suggest a solution to these
problems. It asserts that these difficulties can be made to disappear if readers simply realign
their logic to a different set of rules and then re-read [Mochizuki, 2021a,b,c,d] with this new
set of rules (unfortunately no discussion of this logic appears in [Mochizuki, 2021a,b,c,d]).
One conclusion which may be drawn from [Mochizuki, 2022] is that the issues in [Mochizuki,
2021a,b,c,d] require an external circumvention which is (now) provided by [Mochizuki, 2022].

Let me address Mochizuki’s discussion of one such suggestion provided in [Mochizuki,
2022, Example 3.2.2, page 77]. Some readers may find the rest of this paragraph (i.e. § 1.7) a
bit technical and may wish to skip over to § 1.8. Following its notation let me write k = Qp (or
some p-adic field) and let k̄ be an algebraic closure of k, let q ∈ k with |q|k < 1. For a natural
number n, let

Fn = O∗
k̄ × (qn)Z ⊂ k̄∗

(considered as multiplicative monoids).
Then Mochizuki wants to consider the isomorphism of monoids

(1.7.1) Fn
≃ // F1

and asserts that in [Mochizuki, 2021a,b,c] one wants to glue data along such isomorphisms.
First of all such isomorphisms of monoids obviously exist. The issue in [Mochizuki,

2021a,b,c] is not about the existence of such isomorphisms but whether or not such an isomor-
phism of monoids arises from some arithmetic geometric data associated to a given hyperbolic
curve X/k of topological type (1, 1) with q being the Tate parameter of X/k.

Using the techniques of [Joshi, 2023a], let me sketch a proof of the fact established in
[Joshi, 2023b] that a precise version of this gluing of monoids does indeed arise from distinct
arithmetic geometric data ([Joshi, 2023b]) and that it arises from incompatible ring/field struc-
tures as is required in [Mochizuki, 2021a,b,c,d] according to [Mochizuki, 2022, Example 3.2.2,
page 77]. [A detailed and general version of my result and its proof appears in [Joshi, 2023b].]
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Using methods I have developed in [Joshi, 2022a, § 6] one can prove that one may find,
for each n = 1, 2, 3, . . ., an arithmetic holomorphic structure providing embeddings k ↪→ Kn

into algebraically closed perfectoid fields Kn such that |p|Kn
= |p|nK1

. Now let qn be the Tate
parameter of Tate curve Xan

Kn
. Then for each n = 1, 2, 3, . . . one has an isomorph F1(k ↪→ Kn)

of Mochizuki’s monoid F1 given by computing this monoid in the datum k ↪→ Kn. One has

F1(k ↪→ Kn) = O∗
k̄ × qZn

here k ↪→ Kn provides a copy of the algebraic closure k̄ ⊂ Kn of k (and so readers must be
cautious in reading the statements below–each side of the equality refers to its own copy of k̄).
So for each n = 1, 2, 3, . . . one has an abstract isomorphism of monoids

(1.7.2) F1(k ↪→ Kn) = O∗
k̄ × qZn

qn 7−→q1// O∗
k̄ × qZ1 = F1(k ↪→ K1),

(because both refer to the same object computed for two different arithmetic holomorphic struc-
tures) and also the equality of valuations

|qn|Kn
= |q1|nK1

,

and typically each k ↪→ Kn arises from a distinct arithmetic holomorphic structure (by con-
struction). At any rate, the isomorphism (1.7.2) is naturally provided by my approach and is
the precise version of what is needed in [Mochizuki, 2021a,b,c,d].

This isomorphism can be recast as an isomorphism Fn ≃ F1 in Mochizuki’s style (1.7.1)
as follows. Since the unit groups appearing above are divisible and one may identify k̄ ⊂ Kn

abstractly with k̄ ⊂ K1 and view qn, q1 in one common field then one may write the monoids
appearing in the above equation as

O∗
k̄ × qZn ≃ O∗

k̄ × (qn1 )
Z.

This is the shape of the isomorphism asserted in [Mochizuki, 2022, Example 3.2.2].
However, it is not the mere gluing of monoids that is at issue in [Mochizuki, 2021a,b,c],

but the existence of the arithmetic holomorphic structures (for Mochizuki this is a surjection
Π → Gk) which provide such a gluing. Notably my clear understanding of the theory is that
one wants (1.7.2) and not the simplistic version (1.7.1) for the theory to work.

Mochizuki’s assertion in [Mochizuki, 2022] is that one must consider Fn and F1 for his
theory instead of Fn or F1 ([Mochizuki, 2022, Example 2.4.8, page 58]). My observation is
that this is a correct assertion but not for the reasons Mochizuki provides (namely declaring
that the logic of the theory is different), but because Fn is an avatar of F1 for a verifiably dis-
tinct arithmetic holomorphic structure! [This is exactly what happens in classical Teichmuller
Theory which provides many (metrically) distinct avatars of a given Riemann surface i.e. Te-
ichmuller theory provides many distinct Riemann surfaces of a given, fixed moduli.]

The question for me has never been whether or not the copies of the monoids F1,Fn should
be considered redundant, but how does one distinguish them as arising from distinct arithmetic
and geometric data. This is also my reading of the relevant portion of the objections of [Scholze
and Stix, 2018, Scholze, 2021]. My theory answers this question, at least for me, and my
solution (1.7.2) can also be applied to [Mochizuki, 2021a,b,c,d]. Hence I am not persuaded that
[Mochizuki, 2022] adequately addresses the core questions related to [Mochizuki, 2021a,b,c,d].
On the other hand, many of Mochizuki’s claims in [Mochizuki, 2021a,b,c] and [Mochizuki,
2022] do have clear proofs in my theory.
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§ 1.8 My work has made foundational inroads in arriving at an understanding of Mochizuki’s
claims and dismantling many of the arguments against his work–the principal ones being
[Scholze and Stix, 2018, Scholze, 2021].

Note that Scholze and Stix, especially [Scholze and Stix, 2018, Remark 9], cite [Mochizuki,
2015, Theorem 1.9 and Corollary 1.10] as evidence against [Mochizuki, 2021c, Corollary 3.12]
(this argument is repeated by Scholze on Peter Woit’s Blog [Scholze et al., April 2020, Page 1]
and on MathOverFlow).

My fundamental observation is that Scholze and Stix have failed to distinguish that [Mochizuki,
2015] deals with moduli theory (i.e. determination of the isomorphism class of the curve)
while [Mochizuki, 2021a,b,c,d] uses Teichmuller Theory (as should be clear from the very ti-
tle of Mochizuki’s [Mochizuki, 2021a,b,c,d]). There is no mention of Teichmuller Theory in
[Scholze and Stix, 2018]. Teichmuller Theory is a finer theory than moduli theory and in the
classical case it weakens the notion of conformal equivalence of Riemann surfaces and provides
a richer geometric theory from which moduli theory emerges as a special case. Any argument
that moduli theory exists and therefore Teichmuller Theory cannot exist is an incorrect conclu-
sion.

Once this point is understood, it is clear that [Scholze and Stix, 2018, Remark 9] which
implies that [Mochizuki, 2021a,b,c,d] has no valid strategy, and hence has no mathematical
merit, is itself a flawed argument. [The core idea of [Mochizuki, 2021a,b,c,d] is to average
over a suitable Teichmuller data–my theory constructs a space of such Teichmuller data (i.e. a
Teichmuller space) explicitly. Unlike [Mochizuki, 2022], I provide mathematical proofs of the
existence of Teichmuller Theory in the arithmetic context.]

I hope that this mathematical understanding that I bring to [Scholze and Stix, 2018] objec-
tions will put to rest the Scholze and Stix, Remark 9 argument against [Mochizuki, 2021a,b,c,d]
once and for all and its mathematical resolution presented in my work.

§ 1.9 Over the past years, many attempts have been made in deciphering Mochizuki’s claims
regarding the abc-conjecture. As for me, nothing but clear mathematics will suffice. The
abc-conjecture is ultimately about remarkable properties of Numbers as we teach in our Math-
ematics Curricula and so its proof must be clearly laid out. I have chosen to present my work
with this optik in mind. If my work appears elementary to some readers, it is entirely because
of my desire to make my work accessible to all mathematicians (and so experts on both sides of
the debate should have no difficulty in understanding the proofs in my papers). Readers should
not conflate clarity of my work with triviality.

§ 1.10 Here is a more accessible description of Arithmetic Teichmuller Theory developed in
my papers and how it relates to Mochizuki’s work and some insight into [Mochizuki, 2021c,
Corollary 3.12] from the point of view of classical Teichmuller Theory. This will require some
familiarity with the theory of Riemann surfaces and with classical Teichmuller Theory (some
standard texts are [Imayoshi and Taniguchi, 1992], [Nag, 1988], [Lehto, 1987]). When I discuss
the arithmetic case, I will suppose that X is a geometrically connected, smooth quasi-projective
variety over a p-adic field which I will take to be Qp for simplicity. In Mochizuki’s context X
is additionally required to be a hyperbolic curve.

§ 1.11 Suppose Σ is a fixed closed Riemann surface of genus g ≥ 1. Suppose TΣ is the
Teichmuller space of Σ. Let Σ′ ∈ TΣ be another Riemann surface in the Teichmuller space
TΣ of Σ. This means one has a quasi-conformal mapping f : Σ → Σ′ which is in fact a
homeomorphism of the underlying topological spaces |Σ′| ≃ // |Σ|. In Teichmuller Theory
one usually fixes the underlying topological space |Σ| and works with many different complex
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structures (or quasi-conformal data) on |Σ| corresponding to points of TΣ.
Suppose that γ is a simple closed curve on Σ and suppose that one is interested in the

length of γ (or more generally some function of the length of γ) for the metric given by the
holomorphic structure of Σ. If f : Σ → Σ′ is a quasi-conformal mapping, then one may view
the curve γ as a curve on Σ′ and measure its length for the metric given by Σ′. There is a
natural well-defined procedure to do this (for instance see [Imayoshi and Taniguchi, 1992]).
This allows us to consider the length of γ in Σ′ as Σ′ varies over all of TΣ, or Σ′ varies over a
conveniently chosen subset S ⊂ TΣ containing the point (of interest) corresponding to Σ and
one can use this set to bound the length of γ on Σ. For example, one trivial bound is to take the
supremum over lengths of γ in Σ′ as Σ′ varies in our chosen subset S ⊂ TΣ.

§ 1.12 Here is one natural choice of a subset of TΣ containing the point corresponding to
Σ (I will identify Σ with the point corresponding to it in TΣ). Now consider the Teichmuller
mapping

TΣ →M

which maps Σ′ ∈ TΣ to its isomorphism class [Σ′] ∈M in the moduli of Riemann surfaces of
the same topological type as Σ. This mapping is the canonical quotient mapping of TΣ by the
action of the Teichmuller modular group. Let

S[Σ] = {Σ′ ∈ TΣ : [Σ′] = [Σ] ∈M } ⊂ TΣ

be the fiber of the Teichmuller mapping over the isomorphism class [Σ] ∈M of Σ.
The set S[Σ] can be identified with the orbit of Σ under the action of the Teichmuller modular

group. The metric provided by each point Σ′ ∈ S[Σ] varies but the isomorphism class of every
point Σ′ ∈ S[Σ] coincides with the isomorphism class of Σ in the moduli M .

Notably even if the isomorphism class of Σ is held fixed, metrically one sees some non-
trivial variation among the Σ′ ∈ S and it is possible to bound length of γ using metrics provided
by the Riemann surfaces corresponding to points Σ′ ∈ S[Σ]. More sophisticated versions of
this argument in fact do occur in the literature on Teichmuller and moduli spaces of Riemann
surfaces (for example see a survey of M. Mirzakhani’s work in [Wright, 2019]).

Broadly speaking, Mochizuki’s Corollary 3.12 is, at least in spirit, this sort of method of
bounding a metrically dependent quantity in the presence of a non-trivial variation of (p-adic)
metrics. Notably Mochizuki’s log-volume computation in Corollary 3.12 should be understood
as being similar in spirit to the computation of the volume of M1,1 via MacShane’s Identity
due to M. Mirzakhani (see [Wright, 2019]). Notably, Mirzakhani’s computation of the volume
M1,1 requires working with suitably extended moduli or Teichmuller space M ∗

1,1 where the
computations can be transparently performed. Similarly Mochizuki’s theory (and my theory)
requires working with a suitably extended moduli (or Teichmuller) spaces. My approach to
[Mochizuki, 2021c, Corollary 3.12] is detailed in [Joshi, 2023a]. My observation in [Joshi,
2023a,b] is that once one has many distinct arithmetic holomorphic structures and other relevant
results in place, many versions of Mochizuki’s Corollary 3.12 can be formulated (even if one is
dealing with several primes instead of one prime as [Joshi, 2023a] does and such a formulation
appears in [Joshi, 2023b]). Each version depends on the choice, at each prime, of a suitable set
for collating theta-values arising from different arithmetic holomorphic structures; Mochizuki’s
choice of this set at each prime is a suitable Galois cohomology group and my choice (at each
prime) is the Fargues-Fontaine ring Bp = BC♭

p,Qp
.

§ 1.13 If one looks at Σ and Σ′ ∈ TΣ through the narrow lens of fundamental groups, one
misses the quasi-conformal structures (and varition of metrics) of Σ,Σ′ completely. Notably
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Teichmuller Theory (classical, Mochizuki’s and my theory) are not about fundamental groups
per se but about the variation of the (arithmetric geo)metric data i.e. of arithmetric data. [So-
cial Media discussions of [Mochizuki, 2021a,b,c,d] make it clear that this point has not been
understood at all.]

§ 1.14 In Diophantine Geometry, heights are dependent on p-adic and archimedean metrics
and for this purpose one should work with more geometric objects which allow us to deal with
metric structures and their variation directly.

This is why I work with rigid analytic spaces in the sense of Berkovich’s Theory instead of
using the theory of schemes or fundamental groups as Mochizuki does. My analytic approach
is similar to the case of Riemann surfaces and quasi-conformal mappings. Analytic spaces, of
course, provide Riemann surfaces and p-adic curves (respectively) and also their fundamental
groups. This provides full compatibility with Mochizuki’s group theoretic approach.

§ 1.15 My work in fact produces the exact analog of the classical picture in the p-adic context.
Let X/Qp be a geometrically connected, smooth quasi-projective curve over Qp (say). I observe
that non-trivial deformations of the pair X/Qp and K alg. closed perfectoid field containing
Qp exist in which the isomorphism class of X/Qp remains fixed but the Qp-isomorphism class
of the analytic space Xan

K (note that K/Qp is far from being a finite extension or even a finitely
generate extension) moves because the field K itself admits non-trivial p-adic deformations.
This is best demonstrated when (X/Qp, X/K) are projective or proper and this I carry out in
my [Joshi, 2021a]. The pair of analytic spaces (Xan

Qp
, Xan

K ) provide the triple of data

πtemp
1 (Xan

Qp
)←↩ πtemp

1 (Xan
K )

consisting of the tempered fundamental group of Xan
Qp

and the geometric tempered fundamental
group Xan

K and together with the inclusion of the latter in the former (both the groups computed
using a common choice of a K-geometric basepoint).

There is no mathematical disagreement with my claim and its proofs in [Joshi, 2021a,
2022b,a]. Several experts on tempered fundamental groups (including Jacob Stix in 2020–
[Joshi, 2022b]) have looked at my proofs. But no mathematical issues with my claims have
emerged to date. So the proofs are quite firm at this point (some typos may occur of course).
Since [Scholze and Stix, 2018], only Scholze has provided further published commentary
on Mochizuki’s work (through [Scholze, 2021] and public online discussion). I would wel-
come additional comments from Stix about [Mochizuki, 2021a,b,c,d], whether his position has
changed or not.

§ 1.16 Now to address the question of why one should bring in perfectoid fields K in the
anabelian context at all? This is a perfectly valid question. If truth be told, many anabelian
geometers and algebraic geometers may feel that this is an external imposition on anabelian
geometry.

However, the answer to this question rests on the following three points:

(1) The minimal geometric data required to define the tempered fundamental group of X/Qp

consists of

(a) X/Qp and

(b) a morphism M (K)→ Xan
Qp

of analytic spaces, where K is an algebraically closed
complete, rank one valued field K, containing an isometrically embedded Qp, to
serve as a geometric basepoint. Such algebraically closed complete valued fields K
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are (algebraically closed) perfectoid fields. The tempered fundamental group itself
is independent of the choice the geometric basepoint and hence of K [André, 2003,
Chap III, § 1.4.4].

(2) Moreover if one wants to work with arbitrary isomorphs of tempered fundamental groups,
as Mochizuki does, then this in particular means arbitrary algebraically closed perfectoid
fields K (as above) are necessarily allowed in [Mochizuki, 2021a,b,c].

(3) Now for the most important point: from Mochizuki’s discussion (in [Mochizuki, 2021a,
§ I3, page 25]) of the fundamental role of arbitrary basepoints in [Mochizuki, 2021a,b,c]
and the fact the key operations of the theory such as the theta-link and the log-links
require distinct basepoints, it becomes clear that [Mochizuki, 2021a,b,c] is a theory which
requires working with many distinct basepoints simultaneously. However, fundamental
groups arising from distinct basepoints, while being non-canonically isomorphic, may
not be identified with each other in [Mochizuki, 2021a,b,c]. So arbitrary perfectoid fields
are inevitably present in the theory!

§ 1.17 So my introduction of algebraically closed perfectoid fields in this context is quite
a natural one based on requirements of [Mochizuki, 2021a,b,c]. Now my observation is that
whether one works with Mochizuki’s point of view of working with all the arbitrary isomorphs
of the tempered fundamental group (in [Mochizuki, 2021a,b,c,d]) or whether one works with
the collection of the data consisting of (X/Qp, X

an/K,K-geometric basepoint of Xan
E ) as is

done in [Joshi, 2022a], [Joshi, 2021a], collections of each of these data have the look and feel
of the fiber of the Teichmuller mapping TΣ →M (considered above) because the isomorphism
class of X/Qp remains fixed in [Mochizuki, 2021a,b,c], [Joshi, 2021a] and [Joshi, 2023a].

§ 1.18 One important point which should be understood is this: as every abstract isomorphism
between discretely valued fields is in fact an isomorphism of valued fields, so it is not possible
to construct arithmetic Teichmuller Theory by working with discretely valued fields alone!
Doing so leads to fallacious conclusions of the sort which have been made in the context of
[Mochizuki, 2021a,b,c].

§ 1.19 Importantly the p-adic results I establish have clear classical analogs and one impor-
tant observation is that Mochizuki’s Indeterminacy of Type II (required in the statement of
[Mochizuki, 2021c, Theorem 3.11, Corollary 3.12]) has a classical analog. It corresponds to
the Virasoro action on Teichmuller and Moduli spaces which has been well-studied in Physics
literature as well as algebraic geometry literature ([Beilinson and Schechtman, 1988], [Kontse-
vich, 1987]). The precise p-adic analog of this action is established in [Joshi, 2021a, 2022a].
This action is an important ingredient in [Mochizuki, 2021c, Theorem 3.11] (and hence in the
formulation of [Mochizuki, 2021c, Corollary 3.12]).

Notably I am able to prove that arithmetic holomorphic structures move non-trivially under
this action–this is asserted by Mochizuki in [Mochizuki, 2021c, Theorem 3.11 and Corollary
3.12] but this claim has proved rather difficult for me to verify using Mochizuki’s approach.

But perhaps more importantly, I demonstrate that Mochizuki’s Indeterminacies of all types
arise naturally from geometry and arithmetic properties of the spaces I construct. More pre-
cisely Mochizuki’s Indeterminacies (see [Joshi, 2021b] for my discussion of Indeterminacies)
arise from the forgetful functor

(Xan
Qp
, Xan

K ) 7−→
(
πtemp
1 (Xan

Qp
)←↩ πtemp

1 (Xan
K )

)
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which forgets arithmetic holomorphic structures and remembers only the tempered fundamen-
tal group and the geometric tempered fundamental (sub)group. This is similar to the functor
from classical Teichmuller Theory

TΣ ∋ Σ′ 7−→ π1(Σ
′)

which forgets the complex structure of Σ′ and remembers only the fundamental group. Notably,
numerical or geometric quantities which are associated to Σ′ i.e. to a complex structure on the
topological space |Σ| necessarily appear indeterminate from the point of view of this functor.
So my analogy with classical Teichmuller spaces is to the point, and my theory provides a far
better way to understanding and proving Mochizuki’s claims.

§ 1.20 One important point which needs to be made here is that for Diophantine applications
one needs to compute local arithmetic degrees in a uniform way as the arithmetic holomorphic
structure varies. This requires working with arithmetic holomorphic structures ([Joshi, 2022a,
2021a]) arising from a fixed algebraically closed perfectoid field F of characteristic p > 0
(for example C♭

p). Mochizuki has a similar requirement in [Mochizuki, 2021a,b,c]. His theory
tracks value group information separately using Frobenioids and this is central to [Mochizuki,
2021c, Corollary 3.12]. My approach using arithmetic holomorphic structures is detailed in
[Joshi, 2022a] and [Joshi, 2021a] and [Joshi, 2023a].

§ 1.21 It is true that Classical Teichmuller Theory has seldom been used in Diophantine geom-
etry in the past. But this does not mean it cannot be used. The proofs of the geometric Szpiro
inequality [Amorós, Bogomolov, Katzarkov, and Pantev, 2000], [Zhang, 2001] take place in
the presence of classical Teichmuller data of a Riemann surface (Mochizuki’s discussion of
these two papers appears in [Mochizuki, 2016]). These proofs essentially work with orbits of
the mapping class group (see my discussion of this in § 1.12). To me, these proofs already
demonstrate the role that classical Teichmuller Theory can play in global Diophantine prob-
lems in the geometric case. On the other hand [Scholze and Stix, 2018, Scholze, 2021] offers
no discussion of [Amorós et al., 2000], [Zhang, 2001], [Mochizuki, 2016]. My parallel reading
of these three works has played an important role in the evolution of my ideas on Arithmetic
Teichmuller Spaces in the context of Diophantine applications. History of Diophantine Ge-
ometry, in the past hundred and fifty years, shows that an understanding of the geometric case
has often paved the road to the proofs in the arithmetic case. This is an important point which
should not be forgotten.

§ 1.22 To be sure, my papers detail the local picture i.e. the view at every prime. Mochizuki
starts with the global picture which makes his approach difficult to understand. My approach is
the opposite. I came to recognize early on in my investigations that the central difficulty which
many have had in even imagining that an assertion such as [Mochizuki, 2021c, Corollary 3.12]
might be true is because [Mochizuki, 2021a,b,c] offers no convincing demonstration of the
existence of distinct arithmetic holomorphic structures and this existence is a local assertion to
be established at each prime. So I felt the need to firmly establish the local picture before one
can hope to make any global Diophantine assertions–this is not any limitation of my methods.
Global theory is dealt with in [Joshi, 2023b].

In [Joshi, 2023a] I prove my version of [Mochizuki, 2021c, Corollary 3.12] based on the
ideas elaborated in that paper and in [Joshi, 2021a]. My paper [Joshi, 2023a] works with
one prime for simplicity, but in general one needs to work with several primes simultaneously
and this will appear in [Joshi, 2023b] (proofs of both of my versions is similar). Notably my
approach to the general case demonstrates how (and why) the tensor packet structure asserted
by Mochizuki in [Mochizuki, 2021c, § 3] arises.
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§ 1.23 Recently there was some discussion of my work on Mathoverflow, to which I have
posted a brief response on David Roberts’s blog. Here, I address the claims posted there about
lack of applications of my work to Diophantine inequalities. Diophantine inequalities require
bounding Arakelov heights of points. This theory of heights is about metrics both archimedean
and non-archimedean (my discussion of the geometric case of Szpiro inequality is in § 1.21).
Mochizuki’s claim is that greater insight (and better bounds) may be obtained by considering
a natural family of metrics (more precisely–arithmetic holomorphic structures) containing the
given one and averaging over such a family. That such an averaging is possible (even in the
non-archimedean case) is a point I prove with great precision in my papers.

§ 1.24 There is no doubt that I make a rather unconventional usage of mathematics familiar to
some mathematicians. But this way of thinking is a completely valid usage of the underlying
mathematics and the objects I describe exist, whether one likes it or not, and they have the
properties which I have established in my papers.

§ 1.25 My work, building on Mochizuki’s work, offers a different way of thinking about
Numbers in the context of Diophantine Geometry. I claim that the critical insight which our
works offer is that in a precise sense p-adic arithmetic (and consequently p-adic Geometry) is
both remarkably rigid and remarkably fluid. For the past hundred years number theorists have
mostly worked with p-adic arithmetic in its rigid aspect. The central thesis of our works is
that new insights into Arithmetic and Diophantine Geometry may be gained by incorporating
the fluid aspect–because one has the freedom to do so. Mochizuki and I have arrived at this
viewpoint by entirely different but convergent paths.

§ 1.26 If there are any mathematical questions or challenges to my work I will be happy to
answer them. I thank David M. Roberts for suggestions which have improved the readability
of this manuscript.
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Yves André. Period mappings and differential equations. From C to Cp, volume 12 of MSJ
Memoirs. Mathematical Society of Japan, Tokyo, 2003. Tôhoku-Hokkaidô lectures in arith-
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