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0.1

I address Mochizuki’s and Scholze’s comments about local/global issues in my proof of
Theorem 9.11.1 in [Constr. III] and its relationship with the proof of the main theorems of
[Const. IV]. Note that [Constr. IV] closely follows [IUT 4]. This revised document was also
emailed to Mochizuki and also to Scholze.

0.2

Two important point of clarification:

(1) There is a global action of L∗ on the space of arithmeticoids which is described in
[Constr. II(1/2), Theorem 4.2.3, Theorem 4.4.1, Corollary 4.4.2] (similar properties,
especially Cor. 4.4.2, has been asserted by Mochizuki in [IUT3] as being part of global
aspects of his theory). I have been a bit lax in explicating the role of this action in
current version of [Constr. III]. But this will be done in the next update of [Constr.
III]. The role of this global action of L∗ in the theory of heights in the context of
the abc-conjecture and Diophantine Geometry is already indicated in the examples
discussed in [Constr. II(1/2), §8.5].

(2) The recent update of [Constr. II(1/2)] includes two innovations [Constr. II(1/2), Thm
5.9.1, Remark 5.9.2]. These establish the role of the (global) product formula in my
theory and notably establishes how this provides a (global) arithmetic period mapping.
As can be seen from [IUT1, Theorem A, Page 18], [IUT3, Remark 3.9.6, Page 564],
Mochizuki asserts various aspects of this point (either implicitly in proofs of [IUT 3,
Cor. 3.12] or explicitly). But my approach to this as a period mapping is the most
natural formulation.

(3) My preprints are still evolving and as I revisit them, further additions and improve-
ments are definitely to be expected.
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0.3

It will be useful to understand the logical dependency of various theorems of [IUT 3] and
[IUT 4]. This is not the order in which these results appear in [IUT 3], [IUT 4]. But in my
opinion, this is the order in which they should be assimilated.

(1) [IUT 4, Corollary 2.2] Existence of Initial Theta Data. These data are required for
construction of the set Θ (discussed below).

(2) [IUT 3, Corollary 3.12]–requires the previous result [IUT 4, Corollary 2.2] for con-
structing Θ and provides lower bound on the volume V ol(Θ) of Θ.

(3) [IUT 4, Theorem 1.10]–provides an upper bound on V ol(Θ).

(4) [IUT 4, Corollary 2.3]–provides the main result (abc-conjecture) of [IUT 1-4].

However, for the ease of comparison between my papers and Mochizuki’s, in [Constr. III, IV]
I have preserved Mochizuki’s original content-wise appearance by putting results of [IUT 3]
in [Constr. III] and results of [IUT 4] in [Constr. IV]. But in my opinion, the above ordering
is more logical and this is the ordering in which these results should be read.

0.4

Important to note that Mochizuki [IUT 4] (or my work) does not directly tackle Szpiro’s
inequality. Rather one tackles Vojta’s inequality. By [Mochizuki 2010, Thm 2.1], Vojta’s
inequality can be proved by reduction to compactly bounded subsets. To understand the
claims made in my paper or [IUT 4], let

U = P1 − {0, 1,∞}

and for a fixed integer d ≥ 1, let

Ud(Q) = U(Q)≤d = (P1 − {0, 1,∞})(Q)≤d

be the set of algebraic points of degree ≤ d. The relationship between U and elliptic curves
is given by viewing U as j-line for the Legendre family of elliptic curves:

U ∋ j = jλ

where jλ is the j-invariant of the Legendre elliptic curve

Cλ : y2 = x(x− 1)(x− λ).

0.5

I will keep to the general strategy that Mochizuki adopts rather than getting into specifics
(for clarity). Mochizuki’s strategy for proving Vojta’s inequality (of [IUT 4, Thm 1.10])
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takes the following shape. We want to prove (on a given compactly bounded subset of Ud(Q)
whose support contains all primes over {2,∞}) that:

0 < X ≤ Y. (0.5.1)

This inequality is proved (both in [IUT 4] and [Constr. IV]) in an indirect fashion while
working with the given compactly bounded subset of Ud(Q) supported on a finite set of
primes containing all primes lying over {2,∞}. [Let me remark that even for a compactly
bounded set, there is a set of exceptions, but I will not discuss that point here. This is
treated out both in [Constr. IV] and [IUT 4].]

Working with a compactly bounded set whose support contains all primes lying over
{2,∞} means in particular that j ∈ Ud(Q) lives in a compact subset of

(P1 − {0, 1,∞})(C) = C− {0, 1}

for all embeddings of Q(j) ↪→ C. Hence under this assumption, for all embeddings of
Q(j) ↪→ C, the absolute value |j|C is bounded (from above and from below) and a similar
assertion holds for all primes in the support of the compactly bounded subset. The inequality
(0.5.1) is established for j-values in the given compactly bounded subset.

0.6

The main idea of [IUT 3, 4] to prove (0.5.1) is to construct a set Θ. The construction of
this set Θ requires the existence of Initial Theta Data and this existence itself requires one
to work with a compactly bounded subset! Notably

(1) in general, no version of Corollary 3.12 is available without the existence of Initial
Theta Data,

(2) and in general Initial Theta Data are available only on a given compactly bounded
subset ([IUT 4, Cor 2.2]).

(3) So Corollary 3.12 can be claimed only on a given compactly bounded subset.

(4) Various parameters, which enter Corollary 3.12 and [IUT, Theorem 1.10], require the
existence of Initial Theta Data and hence are dependent on this compactly bounded
subset (in general).

(5) Especially no version of Corollary 3.12 is available on all of Ud(Q).

Now for a fixed compactly bounded subset providing Initial Theta Data, this set Θ is a
subset of an adelic object i.e.

Θ =
∏
p

Θp ⊂
∏
p

Vp

where, p runs through all places of Q, and Vp is some finite dimensional p-adic vector space.

3



0.7

Each Vp is in fact a tensor product of some p-adic fields (considered as Qp-vector spaces).
Each Vp is equipped with some p-adic volume form which pays attention to the tensor product
structure and is different from the standard volume form. Notably it is not a translation
invariant volume i.e. not a Haar measure. Moreover

V ol(Θ) =
∏
p

V olp(Θp).

0.8

But the important point is that Θ is a set of adelic type and the volume of all but finitely
many components V olp(Θp) = 1. In particular, V ol(Θ) is finite if and only if each Θp has a
finite volume. Mochizuki works with logarithms of volumes and not volumes. I will simply
write LogV ol for the natural logarithms of volumes and hence LogV olp(Θp) = 0 for all but
a finite number of primes p.

�

To be absolutely precise, in [IUT 4] or [Constr. IV] one actually works with V ol(Θ)1/ℓ
∗

(instead of V ol(Θ)) where ℓ∗ = ℓ−1
2

for a suitably chosen prime number ℓ ≥ 5. This difference
does not affect the present discussion in any way.

Purely for the sake of exposition, I will pretend here that LogV olp(Θp) > 0 when it
is non-zero to avoid dealing with signs and sign conventions in Mochizuki’s paper (but my
paper works the inequalities out carefully avoiding this sort of simplification). [In the current
version of [Constr. III, IV] there are some typos, LogV ol(Θ) appears in some place where
|LogV ol(Θ)| should. But these typos will be fixed in the next update.]

0.9

On a fixed compactly bounded subset of Ud(Q), where one has the Initial Theta Data required
for defining Θ, we seek a bound of the form:

A ≤ LogV ol(Θ) =
∑
p

LogV olp(Θp) ≤ A′. (0.9.1)

Note:

(1) This equation (0.9.1) is not the Vojta inequality (0.5.1) we are trying to prove!

(2) The above bounds are not claimed by me on all of U(Q) or even on Ud(Q) but are
claimed only on a given compactly bounded subset. See my additional remarks in 0.12
below for more on this.

0.10

At any rate, for each given compactly bounded subset of Ud(Q), by construction, Θ is a set
of adelic sort. Hence the global volume of Θ can be bounded both from above and below by
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summing component volumes for all p. There is no known obstruction to this which I can
think of.

0.11

Calculating at each prime p, say we find for suitable real numbers zp, z
′
p ∈ R≥0, that

A =
∑
p

zp ≤
∑
p

LogV olp(Θp)

and ∑
p

LogV olp(Θp) ≤
∑
p

z′p = A′

with zp, z
′
p = 0 for all but a finite number of primes while zp > 0 for a finite, non-empty set

of primes. Then one has

0 < A ≤ LogV ol(Θ) =
∑
p

LogV olp(Θp) ≤ A′. (0.11.1)

Then Mochizuki’s assertion in [IUT 4] or [Constr. IV] is that

A′ = C · A for some constant C ∈ R, and (0.11.2)

C = Y −X + 1 for X, Y as in (0.5.1). (0.11.3)

Hence Mochizuki deduces from (0.11.1), (0.11.2) and (0.11.3) that

C = Y −X + 1 ≥ 1

and hence deduces the required inequality (on a fixed compactly bounded subset):

X ≤ Y.

�

The following remarks are important:

(1) As far as I see, one arrives at the equation (0.11.2) only after summing over all the
primes.

(2) Note that one is not claiming that zp ≤ z′p holds for each p and in fact this inequality
may not hold for some p while (0.11.1) holds. Of course, if for each prime zp ≤ z′p, then
(0.11.1) certainly holds. Local inequalities zp ≤ z′p will always hold (for all primes) for
some curves whose discriminants are close to their conductor. For example the curve
11.a1 in LMFDB has discriminant -11 and conductor 11. In this example, Szpiro’s
Inequality holds trivially for all ε > 0 with the Szpiro constant 1 for all ε > 0. But
for a randomly chosen elliptic curve, zp ≤ z′p may generally fail to hold for some of the
relevant primes.
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(3) That is why, the best one can hope here is to compare global (0.11.1) upper and lower
bounds on LogV ol(Θ). This is also Mochizuki’s point, but he has articulated this quite
differently. In [IUT 3] Mochizuki takes a different approach to dealing with this aspect
by separating the domain and the codomain of the Θgau-Link in [IUT 3, Corollary
3.12]. That approach is, of course, available in my work, but in [Constr. III], I have
chosen to avoid it for simplicity. Again, importantly, (0.11.1) is not claimed to hold for
all elliptic curves or all U(Q) or even all Ud(Q), but claimed only for a given compactly
bounded subset.

�

Now to address the concerns raised by Peter Scholze regarding [Constr. III, IV]. Scholze
has asserted on MathOverFlow that my proof is local i.e. V ol(Θ) cannot be computed
locally and especially that the possible failure of local inequalities zp ≤ z′p is a weakness
of my results. On the other hand the possible failure of local inequalities zp ≤ z′p is an
important aspect of Szpiro’s inequality and a feature of the theory. It is precisely because
the local inequalities can fail, the next best assertion one can expect to hold is (0.11.1). That
is roughly the strategy of [IUT 3, 4] and [Constr. III, IV].

0.12

Some additional comments are in order:

(1) That Y − X + 1 appears in the upper bound calculation has nothing to do with
component bounds zp, z

′
p.

(2) I do not see any philosophical reason why C = Y − X + 1 should appear here. But
Mochizuki’s calculation of this in [IUT 4] is quite solid and many people including I
have independently checked this quite thoroughly.

(3) Especially surprising is the fact that regardless of the choice of a compactly bounded
subset, C takes the above shape.

(4) [IUT 4, Thm 1.10] and my [Constr. IV, Thm 6.10.1] works by fixing the compactly
bounded set and then establishing the sought (0.5.1) inequality for this subset.

(5) Mochizuki’s calculation of the upper bound is local and is in [IUT 4]. The lower bound
is asserted by Cor. 3.12 and my observation (but not Mochizuki’s) is that the lower
bound is also a local calculation (for a fixed compactly bounded subset).

(6) I do not see any obstruction or contradiction here because eq. (0.11.1) is not claiming
Szpiro’s inequality or abc or Vojta’s inequality (0.5.1).
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