Math 129 Section 005H Lecture 6: Partial fractions & Trig substitution11 1 This document is licensed under a Creative Commons Attribution 3.0 United States License

Distinct roots: general case + shortcut

(Friday, September 3, 2021
Revised after class)
  1. 3)
    7x-5(x-1)(x+2)(x+3) = Ax-1+?
    = Ax-1+Bx+2+Cx+3
    = A(x+2)(x+3)+B(x-1)(x+3)+C(x-1)(x+2)(x-1)(x+2)(x+3)
    = (A+B+C)x2+(5A+2B+C)x+(6A-3B-2C)(x-1)(x+2)(x+3)

    We then solve

    A+B+C = 0
    5A+2B+C = 7
    6A-3B-2C = -5

    by substitution.

A clever shortcut.

Solving linear equations is a lot of work! Here’s a faster way to find A: observe

7x-5(x-1)(x+2)(x+3) = Ax-1+Bx+2+Cx+3
7x-5(x-1)(x+2)(x+3)(x-1) = (Ax-1+Bx+2+Cx+3)(x-1)
7x-5(x+2)(x+3) = A+Bx-1x+2+Cx1x+3.

If we now set x=1, then

7-5(1+2)(1+3)=A+B0+C0=A.