Today's agenda:
- A summary of key theorems regarding stationary distributions
- The Perron-Frobenius Theorem.
- A sketch of the Convergence Theorem for 2-state chains using the Perron-Frobenius Theorem.

Stationary distributions

First, there seems to be some confusion about basic definitions:
- A probability distribution on the state space S is stationary if for all $x \in S$,
 \[\sum_{y \in S} \pi(y)p(y, x) = \pi(x). \]
 \hspace{1cm} (1)

- A Markov chain satisfied detailed balance with respect to a probability distribution π on the state space S if for all $x, y \in S$,
 \[\pi(y)p(y, x) = \pi(x)p(x, y). \]
 \hspace{1cm} (2)

Note that detailed balance is strictly stronger than stationarity: it implies stationarity but stationarity does not imply detailed balance.
- A Markov chain is said to converge to equilibrium if
 \[p^n(x, y) \to \pi(y) \]
 as $n \to \infty$. Equivalently, a chain converges to equilibrium if for any initial distribution,
 \[P(X_n = y) \to \pi(y). \]
 \hspace{1cm} (4)

Here is a summary of key theorems from the text.
- Some of the theorems can be stated a bit more generally without much effort. For example, the assumptions of irreducibility and recurrence in Theorem 1.20 are not really necessary:
Theorem (1.20').

\[
\lim_{n \to \infty} \frac{N_n(y)}{n} = \begin{cases} \frac{1}{E_y T_y}, & T_y < \infty \\ 0, & T_y = \infty \end{cases}
\]

Proof. If \(T_y = \infty \) then \(N_n(y) = 0 \), so the conclusion is trivial.

If \(T_y < \infty \) (so the chain does reach \(y \) at some point), and \(y \) is recurrent, then the proof of Theorem 1.20 applies. (Check it!)

Finally, if \(y \) is transient, then \(1 P_y \left(N(y) = \infty \right) = \lim_{k \to \infty} P_y \left(N(y) \geq k \right) = \lim_{k \to \infty} \rho_{xy}^{k-1} = 0 \). (6c)

So \(N(y) < \infty \) with probability 1. Since \(N_n(y) \leq N(y) \) for all \(n \), the conclusion follows. \(\square \)

Another theorem that generalizes slightly is Theorem 1.19. To avoid complications, here I just state a result for finite state spaces.

Theorem (1.19'). If \(|S| < \infty \) and \(S \) is a disjoint union \(T \cup R \), where \(T \) is the set of all transient states and \(R \) is closed, irreducible, and aperiodic. Then \(p^n(x, y) \to \pi(y) \) for all \(x, y \in S \).

Proof. We go through the different cases:

If \(x, y \in R \), then the result is just Theorem 1.19.

If \(x \in R \) and \(y \in T \), then from the proof of the Decomposition Theorem we know that \(p^n(x, y) = 0 \).

If \(x, y \in T \) and \(x \) does not communicate with \(y \), then \(p^n(x, y) = 0 \) for all \(n \).

If \(x, y \in T \) and \(x \) does communicate with \(y \), then there is an \(m \) such that \(p^m(x, y) > 0 \). And \(p^{m+n}(x, y) \geq p^m(x, y)p^n(y, y) \).

\[
\sum_{n=1}^{\infty} p^n(x, y) = \sum_{n=1}^{\infty} P_x(X_n = y) = E_x \sum_{n=1}^{\infty} \mathbb{I}(x_n = y) = E_x N(y) = E_x \left(N(y) | T_y < \infty \right) \cdot \rho_{xy} + E_x \left(N(y) | T_y = \infty \right) \cdot (1 - \rho_{xy}) = E_y N(y) \cdot \rho_{xy}. \]

(The next-to-last line uses the Markov property.) Since \(y \) is transient, we know \(E_y N(y) < \infty \), so \(p^n(x, y) \to 0 \).

\footnote{I said this incorrectly in lecture today. Duh!}
Finally, suppose $x \in T$ and $y \in R$. We know from the Decomposition Theorem that there is some $z \in R$ such that $x \to z$ and $\rho_{zx} = 0$. Since R is recurrent (because it is closed, irreducible, and finite) we have $\rho_{zy} = 1$, and $x \to y$ as well. As in Eq. (7), we have

$$P_x(X_n = y) = \sum_{k=1}^{\infty} P_x(X_n = y | T_y = k) \cdot P_x(T_y = k) \quad (8)$$

For each k, we have

$$p^n(x, y) = P_x(X_n = y | T_y = k) = P_y(X_{n-k} = y) \quad (9a)$$

for $n > k$, by the Markov property. So

$$\lim_{n \to \infty} p^n(x, y) = \lim_{n \to \infty} P_y(X_n = y) = \pi(y) \quad (10a)$$

by Theorem 1.19, and

$$\lim_{n \to \infty} P_x(X_n = y) = \pi(y) \sum_{k=1}^{\infty} P_x(T_y = k) = \pi(y) \cdot \rho_{xy}. \quad (11a)$$

The last thing we need is $\rho_{xy} = 1$. Heuristically, this is because $x \in T$, so eventually it reaches a recurrent state $z \in R$. Since R is closed and irreducible (and hence recurrent), $\rho_{zy} = 1$ for any z. So $\rho_{xy} = 1$. \(\square\)

Perron-Frobenius Theorem

Theorem. Let P be a stochastic matrix. Then

1) 1 is an eigenvalue of P, and it has a left eigenvector π with all nonnegative entries.

2) $|\lambda| \leq 1$ for all eigenvalues λ of P.

3) If P is irreducible, then the eigenvalue 1 has multiplicity 1, i.e., there is a unique (left) eigenvector π such that $\pi \cdot P = \pi$, $\pi(x) > 0$ for all x, and $\sum_x \pi(x) = 1$.

4) More generally, if the chain has k closed irreducible blocks, then the eigenvalue 1 has multiplicity k, and there are k linearly independent stationary distributions.

2This is not rigorous, because I do not justify exchanging the limit with the infinite sum. But it hopefully gives you an idea for why this is true – think about what the chain is doing!

3This can be made more airtight with a little effort.
5) If \(P \) is irreducible with period \(d > 1 \), then \(P \) has exactly \(d \) eigenvalues \(\lambda \) with \(|\lambda| = 1 \). The eigenvalues all satisfy \(\lambda^d = 1 \), i.e., they are the \(d \)th roots of unity. All other eigenvalues of \(P \) have absolute value \(< 1 \).

6) If \(P \) is irreducible and aperiodic, then all eigenvalues \(\lambda \neq 1 \) have \(|\lambda| < 1 \).

7) If \(P \) is irreducible and satisfies detailed balance with respect to the (unique) stationary distribution \(\pi \), then all eigenvalues are real.

Notes:

1) See this snapshot of the Wikipedia page for more information.

2) Here are some examples and the associated Jupyter notebook.