Math 215 Sect. 6 HW

klin@math.arizona.edu

1. Let

$$
B=\left(\left[\begin{array}{r}
1 \\
-3
\end{array}\right],\left[\begin{array}{r}
1 \\
-2
\end{array}\right]\right)
$$

be a basis of \mathbb{R}^{2}, and

$$
\mathbf{x}=\left[\begin{array}{l}
4 \\
5
\end{array}\right]
$$

Find $[\mathbf{x}]_{B}$, the B-coordinates of \mathbf{x}.
2. Let

$$
A=\left[\begin{array}{rrrr}
1 & -2 & -1 & -1 \\
1 & -1 & -1 & 0 \\
2 & -6 & -1 & -4 \\
3 & -5 & 0 & -2
\end{array}\right]
$$

Find $\operatorname{dim}(\operatorname{Col}(A))$ and $\operatorname{dim}(N u l(A))$.
3. Turn in Sect. 4.5 \#28.

Hint: One way to show this is to first show that the vector space \mathbb{P} of all polynomials is a subspace of $C(\mathbb{R})$, the vector space of all continuous functions of a single real variable. In \#27, you showed that \mathbb{P} is infinite-dimensional. You can use this fact, in combination with one of the theorems in Sect. 4.5, to show that $C(\mathbb{R})$ is infinite-dimensional. (For this problem, you can assume the result of \#27.)

