## Math 464 Fall 2012 Homework \#6

 klin@math.arizona.edu
## Due 10/18

Recall we defined the following in class on Tuesday 10/16: let $X$ and $Y$ be two random variables with joint density $f(x, y)$, and let $x$ be any real number. The conditional density of Y given $X=x$ is defined to be

$$
\begin{equation*}
f_{Y \mid X}(y \mid x)=\frac{f(x, y)}{f_{X}(x)} \tag{1}
\end{equation*}
$$

where $f_{X}(x)$ is the marginal density

$$
\begin{equation*}
f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y \tag{2}
\end{equation*}
$$

Exercise. Suppose

$$
f(x, y)= \begin{cases}\frac{12}{5} x(2-x-y), & 0<x<1 \text { and } 0<y<1  \tag{3}\\ 0, & \text { otherwise }\end{cases}
$$

Find (a) the marginal density $f_{Y}(y)$; (b) the conditional density of $X$ given that $Y=1 / 2$; and (c) the conditional density of $X$ given that $Y=y$ for all $y \in(0,1)$.

Answers:
(a) $f_{Y}(y)=\frac{12}{5}\left(\frac{2}{3}-\frac{y}{2}\right)$
(b) $\quad f_{X \mid Y}(x \mid 1 / 2)=\frac{6 x(3 / 2-x)}{5 / 2}$
(c) $\quad f_{X \mid Y}(x \mid y)=\frac{6 x(2-x-y)}{4-3 y}$

Problem. Suppose the joint density of $X$ and $Y$ is

$$
f(x, y)= \begin{cases}e^{-x / y} e^{-y} / y, & 0<x<\infty \text { and } 0<y<\infty  \tag{4}\\ 0, & \text { otherwise }\end{cases}
$$

Find (a) the conditional density of $X$ given that $Y=y$, and (b) $P(X>1 \mid Y=y)$ for all $y>0$.

