Math 464 Fall 2012
Notes on Marginal and Conditional Densities
klin@math.arizona.edu
October 18, 2012

Marginal densities. Suppose you have 3 continuous random variables X, Y, and $Z, w i t h$ joint density $f(x, y, z)$. The marginal density for X is the $P D F$ of X. In class we gave a formula for this. It is just

$$
\begin{equation*}
f_{X}(x)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y, z) d y d z \tag{1}
\end{equation*}
$$

Similarly, the PDF for Y and Z are

$$
\begin{aligned}
& f_{Y}(y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y, z) d x d z \\
& f_{Z}(z)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y, z) d x d y
\end{aligned}
$$

Notice that to get the density for one of the variables, what we do is integrate over all the other variables. This generalizes naturally to n continuous random variables $X_{1}, X_{2}, \cdots, X_{n}$ with joint density $f\left(x_{1}, x_{2}, \cdots, x_{n}\right)$: we define the i th marginal density of f to be the PDF of X_{i}. The formula is

$$
\begin{equation*}
f_{X_{i}}(x)=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f\left(x_{1}, \cdots, x_{i-1}, x, x_{i+1}, \cdots, x_{n}\right) d x_{1} \cdots d x_{i-1} \quad d x_{i+1} \cdots d x_{n} \tag{2}
\end{equation*}
$$

Notice that we integrate exactly $n-1$ times.
We gave a derivation of this formula in class. Here it is again, for $n=3$. To get the marginal density of X, the basic idea is to first find the $\operatorname{CDF} F_{X}$, then differentiate it. Here goes: let X, Y, Z, and f be as above, and let x be any real number. We start with the observation that

$$
\begin{aligned}
F_{X}(x) & =P(X \leq x) \\
& =P((-\infty, x] \times \mathbb{R} \times \mathbb{R})
\end{aligned}
$$

The 2 nd line just says that we want the probability of the event that $X \leq x$ and that we don't care about the values of Y and Z. From this and the definition of the joint density, we get

$$
F_{X}(x)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{x} f\left(x^{\prime}, y, z\right) d x^{\prime} d y d z
$$

Differentiating, we get11

$$
\begin{aligned}
\frac{d}{d x} F_{X}(x) & =\frac{d}{d x}\left(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{x} f\left(x^{\prime}, y, z\right) d x^{\prime} d y d z\right) \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{d}{d x}\left(\int_{-\infty}^{x} f\left(x^{\prime}, y, z\right) d x^{\prime}\right) d y d z
\end{aligned}
$$

By the fundamental theorem of calculus, we have

$$
\frac{d}{d x}\left(\int_{-\infty}^{x} f\left(x^{\prime}, y, z\right) d x^{\prime}\right)=f(x, y, z)
$$

So

$$
f_{X}(x)=\frac{d}{d x} F_{X}(x)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y, z) d y d z
$$

as desired.
Example. In the darts example with radius 1 , the PDF is

$$
f(x, y)= \begin{cases}1 / \pi, & x^{2}+y^{2} \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

If we want the PDF for the X variable alone, this is given by

$$
\begin{aligned}
f_{X}(x) & =\int_{-\infty}^{\infty} f(x, y) d y \\
& =\int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} 1 / \pi d y \\
& =\frac{2}{\pi} \sqrt{1-x^{2}} \quad \text { if }-1 \leq x \leq 1
\end{aligned}
$$

$f_{X}(x)=0$ otherwise. The first line is just the formula for the marginal of X. To go from the first to the second line, it is important to realize that $f(x, y)$ is nonzero if and only if (x, y) lies on or inside the unit circle.

Conditional density, book's version. Grinstead and Snell gave the following definition of a conditional density: Let X be a random variable with PDF f, and let E be an event with $P(E)>0$. Then we define the conditional density of X given E has occurred to be

$$
f(x \mid E)=f(x) / P(E)
$$

[^0]This extends naturally to 2 or more random variables. For exmaple, if $f(x, y)$ is the joint density for X and Y, and E is an event, then the conditional density of (X,Y) given E is

$$
f(x, y \mid E)=f(x, y) / P(E)
$$

The key thing about these formulas is that they make sense only when $P(E)>0$. If $P(E)=0$, then we would be dividing by 0 .

As an example, in the darts example, if we let E be the event ''the dart lands in the first quadrant,' ' then we have

$$
\begin{aligned}
f(x, y \mid E) & =f(x, y) / P(E) \\
& = \begin{cases}4 / \pi, & x \geq 0 \text { and } y \geq 0 \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

Important! A key property of $f(x \mid E)$ is that it is still a probability density. So if we want the conditional probability $P(A \mid E)$ for some event A, we would evaluate $\int_{A} f(x \mid E) d x$. A consequence is that $\int_{-\infty}^{\infty} f(x \mid E) d x=1$.

Conditional density of \mathbf{Y} given $\mathbf{X}=\mathbf{x}$. A closely related concept is the conditional density of one random variable Y given that a second random variable X has a certain value x. This is different, but related to, the concept of conditional density given in the book. Both notions are useful, but in different ways.

If X and Y are two continuous random variables and x is a real number, the conditional density of Y given $X=x$ is defined to be

$$
\begin{equation*}
f_{Y \mid X}(y \mid x)=\frac{f(x, y)}{f_{X}(x)} \tag{3}
\end{equation*}
$$

The key property of this is that it is a PDF: if we want the probability of an event A given $X=x$, then

$$
P(A \mid X=x)=\int_{A} f_{Y \mid X}(y \mid x) d y
$$

(pay attention to what variable is being integrated, and what's being left alone). In particular, we have

$$
\begin{equation*}
\int_{-\infty}^{\infty} f_{Y \mid X}(y \mid x) d y=1 \tag{4}
\end{equation*}
$$

The reason we need a separate definition when conditioning on $X=x$ is that the event $(X=x)$ has probability 0 . So there is
no way we can use the book's definition (or something like it)
to define the conditional density.
In class I gave a motivation for Eq. (3). Here it is, in a more general form: let $\delta>0$ be any number, and $[a, b]$ be any interval. Then

$$
P(\underbrace{a \leq Y \leq b}_{\text {call this A }} \mid \underbrace{x-\delta \leq X \leq x+\delta}_{\text {call this B }})=\frac{P(A \cap B)}{P(B)}
$$

We have

$$
P(A \cap B)=\int_{a}^{b}\left[\int_{x-\delta}^{x+\delta} f\left(x^{\prime}, y\right) d x^{\prime}\right] \quad d y
$$

We can approximate the term in the square brackets by the rectangle rule, to get

$$
\int_{x-\delta}^{x+\delta} f\left(x^{\prime}, y\right) d x^{\prime} \approx 2 \delta \cdot f(x, y)
$$

so that

$$
P(A \cap B) \approx 2 \delta \int_{a}^{b} f(x, y) d y
$$

We can treat $P(B)$ similarly:

$$
\begin{aligned}
P(B) & =\int_{x-\delta}^{x+\delta}\left[\int_{-\infty}^{\infty} f\left(x^{\prime}, y\right) d y\right] d x^{\prime} \\
& =\int_{x-\delta}^{x+\delta} f_{X}\left(x^{\prime}\right) d x^{\prime} \\
& \approx 2 \delta \cdot f_{X}(x)
\end{aligned}
$$

So we get

$$
\begin{aligned}
P(a \leq Y \leq b \mid x-\delta \leq X \leq x+\delta) & =\frac{P(A \cap B)}{P(B)} \\
& \approx \frac{2 \delta \int_{a}^{b} f(x, y) d y}{2 \delta \cdot f_{X}(x)} \\
& \approx \frac{\int_{a}^{b} f(x, y) d y}{f_{X}(x)}
\end{aligned}
$$

One can show that in the limit as $\delta \rightarrow 0$, the ' ' \approx '' becomes exact ' $=$ '', so we get

$$
P(a \leq Y \leq b \mid X=x)=\frac{\int_{a}^{b} f(x, y) d y}{f_{X}(x)}
$$

In particular, for any real number y, we have

$$
P(Y \leq y \mid X=x)=\frac{\int_{-\infty}^{y} f\left(x, y^{\prime}\right) d y^{\prime}}{f_{X}(x)}
$$

Differentiating gives us Eq. (3). (Notice that the variable x should be treated as a constant in the above.)

Finally, there is a second way to see why the definition in Eq. (3) is reasonable: suppose we want to define $f_{Y \mid X}(y \mid x)$. What properties should it have? At the minimum, it should be a PDF, i.e., Eq. (4) should hold. A second property we might insist on is that for each given value of $\mathrm{x}, f_{Y \mid X}(y \mid x)$ should be proportional to $f(x, y)$ as a function of y, so that events have the right relative frequency. With these conditions, we have

$$
f_{Y \mid X}(y \mid x)=C_{x} f(x, y)
$$

where C_{x} is a ''constant' (it really depends on x) to be chosen so that Eq. (4) holds. It is easy to check (you should do it!) that $C_{x}=f_{X}(x)$.

[^1]
[^0]: ${ }^{1}$ This derivation is not meant to be a proof. To prove the formula along these lines, we would have to justify exchanging the order of differentiation and integration. That belongs in a course on real analysis.

[^1]: ${ }^{2}$ This statement will take some digesting...

