Math 322 Sect. 2
 Homework \#10

Due Wed. 4/1/15
klin@math.arizona.edu

Please write these up and turn them in.

1. Consider the system $X^{\prime}(t)=A X(t)$ with

$$
\left[\begin{array}{rrr}
5 & 0 & 6 \tag{1}\\
3 & 3 & 7 \\
-3 & 0 & -4
\end{array}\right]
$$

By diagonalizing A, find the solution with initial conditions

$$
X(0)=\left[\begin{array}{l}
1 \tag{2}\\
0 \\
0
\end{array}\right]
$$

2. Consider the scalar differential equation

$$
\begin{equation*}
x^{\prime \prime \prime}(t)+a x^{\prime \prime}(t)+b x^{\prime}(t)+c x(t)=0 . \tag{3}
\end{equation*}
$$

(a) By introducing two new variables, rewrite the equation as a firstorder linear system of the form

$$
X^{\prime}(t)=A X(t), \quad X(t)=\left[\begin{array}{l}
x(t) \tag{4}\\
y(t) \\
z(t)
\end{array}\right],
$$

y and z are the new variables you defined.
(b) Suppose now $a=b=c=0$. Find the general form of solutions to Eq. (3).
(c) When $a=b=c=0$, is the matrix A you found in (a) diagonalizable?
(d) For $a=b=c=0$, compute the matrix exponential $e^{t A}$ directly from the power series definition. Using this, find a general solution for Eq. (4). Is it equivalent to your solution in (b)?

