Math 322 Sect. 2

Homework \#12
Due Wed. 4/15/15
klin@math.arizona.edu
The analogy between Fourier series representations and coordinates relative to orthogonal bases suggests various interesting and useful identities. Here is one such identity. Please write up \#1 \& 2 and turn them in. \#3 is optional: do it if you are curious, and whenever you have time.

1. Let x be any vector in \mathbb{C}^{n} and $\left(v_{1}, \cdots, v_{n}\right)$ be an orthogonal basis of \mathbb{C}^{n} with the property that $\left\|v_{n}\right\|=2$ for all n. Let $\left(c_{1}, \cdots, c_{n}\right.$ denote the coordinates of x relative to the basis $\left(v_{1}, \cdots, v_{n}\right)$. Show that $\|x\|^{2}=K \sum_{k=1}^{n}\left|c_{k}\right|^{2}$ for some constant K. What is the value of K ? Hint: $\|x\|^{2}=(x, x)$; use this and the orthogonality of the basis.
2. Let f and g be two functions, and define (as we did in class)

$$
\begin{equation*}
(f, g)=\int_{-\pi}^{\pi} f(x) \overline{g(x)} d x \tag{1}
\end{equation*}
$$

Define $\|f\|=\sqrt{(f, f)}$, and also

$$
\begin{equation*}
v_{n}(x)=e^{i n x} \tag{2}
\end{equation*}
$$

As we discussed in class on Monday, the functions v_{n} are "orthogonal" to each other in the sense that

$$
\begin{aligned}
\left(v_{m}, v_{n}\right) & =\int_{-\pi}^{\pi} e^{i m x} \overline{e^{i n x}} d x \\
& =\int_{-\pi}^{\pi} e^{i m x} e^{-i n x} d x \\
& = \begin{cases}0, & m \neq n \\
2 \pi, & m=n\end{cases}
\end{aligned}
$$

Using this, show that

$$
\begin{equation*}
\|f\|^{2}=K \sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{2} \tag{3}
\end{equation*}
$$

for some constant K. What is the value of K ?
(In many physical problems, $\|f\|^{2}$ can be interpreted as the energy per unit time contained in a wave, and Eq. (3) shows that the energy can be expressed in terms of the Fourier coefficients directly.)
3. Let f be the function

$$
f(x)= \begin{cases}1, & 0<x<\pi \tag{4}\\ -1, & -\pi<x<0\end{cases}
$$

We showed in class that $f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}$ with

$$
c_{n}= \begin{cases}0, & n \text { even } \tag{5}\\ \frac{2}{i \pi n}, & n \text { odd }\end{cases}
$$

Apply the two sides of Eq. (3) to the Fourier series $f(x)$ above to find an explicit expression for $\sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{2}$.

