Math 322 Sect. 2 Homework \#8

Due Wed. 3/11/15
klin@math.arizona.edu

Please write this up and turn it in. Recall we defined the complex exponential function $e^{x+i y}(x, y$ real) in terms of a power series

$$
\begin{equation*}
e^{z}=\sum_{k=0}^{\infty} \frac{z^{k}}{k!} . \tag{1}
\end{equation*}
$$

From this definition alone (without using any other properties of the complex exponential) one can show that for any complex number z and real t,

$$
\begin{equation*}
\frac{d}{d t} e^{z t}=z e^{z t} \tag{2}
\end{equation*}
$$

The purpose of this problem is to show you how one can deduce the other properties of the complex exponential from this property alone. For example, the formula

$$
\begin{equation*}
e^{i t}=\cos (t)+i \sin (t) \tag{3}
\end{equation*}
$$

can be derived from Eq. (2) as follows.
(a) Consider the differential equation

$$
\begin{equation*}
y^{\prime \prime}(t)+y(t)=0, \quad y(0)=1, \quad y^{\prime}(0)=0 \tag{4}
\end{equation*}
$$

Find the solution in terms of \sin and cos.
(b) Now find a solution in the form $c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t}$ where λ_{1} and λ_{2} are roots of $\lambda^{2}+1=0$ and c_{1} and c_{2} are (possibly complex) coefficients determined by the initial conditions.
(c) Show that the solutions you found in (a) and (b) represent the same solution.
(This gives you half of Eq. (3); the other half can be derived by using the initial conditions $y(0)=0$ and $y^{\prime}(0)=1$.)

