Calculator Tutorial for Chapter 1

Input data

Step 1: Press STAT. Go to EDIT.
Step 2: Highlight first option, Edit, then press ENTER.
Step 3: Input your data on list 1 (L1)
() Find five-number summary, mean and std.

Step 1: Press STAT. Go to CALC.
Step 2: Highlight first option, 1-Vat Stats, then press ENTER.
Step 3: Press $\mathbf{2}^{\mathbf{N D}}$ and $\mathbf{1}$ (to use list L1), then press ENTER.
Step 4: Scroll sown.

Make a boxplot

Step 1: Press $\mathbf{2}^{\mathbf{N D}}$ and $\mathbf{Y}=$, and then press ENTER.
Step 2: Highlight On and press ENTER. Then highlight the first boxplot icon and press ENTER.
Step 3: Press ZOOM. Go to $\mathbf{9}$ and press ENTER.
Step 4: If you press TRACE, you should be able to see the values of five-number summary.

Note. The above instructions are for the type of boxplot that enforces the 1.5 IQR rule. If you want a "regular" boxplot, simply highlight the second boxplot icon on your menu and follow the same steps.

Make a histogram

Step 1: Press $\mathbf{2}^{\mathbf{N D}}$ and $\mathbf{Y}=$, and then press ENTER.
Step 2: Highlight On and press ENTER. Then highlight the histogram icon and press ENTER.

Step 3: Press ZOOM. Go to $\mathbf{9}$ and press ENTER.
Step 4: If you press TRACE, you should be able to see min and max for each subinterval and also the frequency.
Step 5: If you want to change the bin width, press WINDOW. Manually input Xmin, Xmax and Xscal.

$$
\text { bin width }=\frac{X \max -X \min }{\# \text { of bins }}
$$

(). Graph a normal distribution density curve.

\#1: normalpdf
pdf $=$ Probability Density Function
This function returns the probability of a single value of the random variable x . Use this to graph a normal curve. Using this function returns the ycoordinates of the normal curve.

Step 1: Press $\mathbf{2}^{\mathbf{N D}}$ and $\mathbf{Y}=$, and then press ENTER. Go to $\mathbf{Y}_{\mathbf{1}}=$.
Step 2: Press $\mathbf{2}^{\mathbf{N D}}$ and VARS, and then press ENTER.
Step 3: Highlight normalpdf(and press ENTER.
Step 4: Press XT日n and ",". Then input mean and std.
Syntax: normalpdf (X, mean, standard deviation)
Step 5: Press ZOOM. Go to $\mathbf{0}$ and press ENTER.

© Calculate probability (Finding an area under the normal density curve)

\#2: normalcdf
cdf $=$ Cumulative Distribution Function
This function returns the cumulative probability from zero up to some input value of the random variable x. Technically, it returns the percentage of area under a continuous distribution curve from negative infinity to the x. You can, however, set the lower bound as $\mathbf{1}$ EE 99. Enter then EE by pressing $\mathbf{2}^{\mathrm{ND}}$ and ",". Only one E will show on the screen.

Step 1: Press $2^{\text {ND }}$ and VARS, and then press ENTER.
Step2: Highlight normalcdf(and press ENTER.
Syntax: normalcdf (lower bound, upper bound, mean, standard deviation)
Example: normalcdf(lowerbound, upperbound, mean, std)

$$
\begin{aligned}
& \text { normalcdf(-1 EE 99, upperbound, mean, std) } \\
& \text { normalcdf(lowerbound, } 1 \text { EE 99, mean, std) }
\end{aligned}
$$

() Show an area under the curve.

\#3: ShadeNorm
The area under the density curve between particular values represents the probability of events occurring within that specific range.

Step 1: Press $2^{\text {ND }}$ and VARS, and then press ENTER.
Step 2: Go to DRAW and press ENTER.
Step 3:Highlight ShadeNorm(and press ENTER.
Syntax: ShadeNorm (lower bound, upperbound, mean, standard deviation)
Note. Before attempting ShadeNorm, be sure that Y1 = normalpdf(x , mean, standard deviation) is active.

-) Given a probability region to the left of a value (i.e., a percentile), determine

 the value.\#4: invNorm(
inv = Inverse Normal Probability Distribution Function.
This function returns the xvalue given the probability region to the left of the xvalue. ($0<$ area <1 must be true.) The inverse normal probability distribution function will find the precise value at a given percent based upon the mean and standard deviation.

Step 1: Press $2^{\mathbf{N D}}$ and VARS, and then press ENTER.
Step2: Highlight invNorm(and press ENTER.
Syntax: invNorm (probability, mean, standard deviation)

