
Perron–Frobenius theorem
In  linear  algebra,  the  Perron–Frobenius  theorem,  proved  by  Oskar  Perron   (1907)  and  Georg
Frobenius (1912), asserts that a real square matrix with positive entries has a unique largest real eigenvalue
and that the corresponding eigenvector can be chosen to have strictly positive components, and also asserts a
similar statement for  certain classes of  nonnegative matrices.  This  theorem has important applications to
probability theory (ergodicity of Markov chains); to the theory of dynamical systems (subshifts of finite type);
to  economics  (Okishio's  theorem,[1] Hawkins–Simon condition[2]);  to  demography  (Leslie  population  age
distribution model);[3] to social networks (DeGroot learning process), to Internet search engines[4] and even to
ranking of football teams.[5] The first to discuss the ordering of players within tournaments using Perron–
Frobenius eigenvectors is Edmund Landau.[6] [7]
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Let  positive  and non-negative  respectively  describe  matrices  with exclusively  positive  real  numbers  as
elements and matrices with exclusively  non-negative real  numbers as  elements.  The eigenvalues of  a  real
square matrix A are complex numbers that make up the spectrum of the matrix. The exponential growth rate
of the matrix powers Ak as k → ∞ is controlled by the eigenvalue of A with the largest absolute value.  The
Perron–Frobenius  theorem  describes  the  properties  of  the  leading  eigenvalue  and  of  the  corresponding
eigenvectors when A is a non-negative real square matrix. Early results were due to Oskar Perron (1907) and
concerned positive matrices. Later, Georg Frobenius (1912) found their extension to certain classes of non-
negative matrices.

Let  be an  positive matrix:  for . Then the following statements hold.

There is a positive real number r, called the Perron root or the Perron–Frobenius
eigenvalue (also called the leading eigenvalue or dominant eigenvalue), such that r is
an eigenvalue of A and any other eigenvalue λ (possibly, complex) is strictly smaller than r in
absolute value, |λ| < r. Thus, the spectral radius  is equal to r. If the matrix coefficients
are algebraic, this implies that the eigenvalue is a Perron number.

1. 

The Perron–Frobenius eigenvalue is simple: r is a simple root of the characteristic polynomial
of A. Consequently, the eigenspace associated to r is one-dimensional. (The same is true for
the left eigenspace, i.e., the eigenspace for AT, the transpose of A.)

2. 

There exists an eigenvector v = (v1,…,vn) of A with eigenvalue r such that all components of
v are positive: A v = r v, vi > 0 for 1 ≤ i ≤ n. (Respectively, there exists a positive left
eigenvector w : wT A = r wT, wi > 0.) It is known in the literature under many variations as
the Perron vector, Perron eigenvector, Perron-Frobenius eigenvector, leading
eigenvector, or dominant eigenvector.

3. 

There are no other positive (moreover non-negative) eigenvectors except positive multiples
of v (respectively, left eigenvectors except w), i.e., all other eigenvectors must have at least
one negative or non-real component.

4. 

Statement

Positive matrices
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, where the left and right eigenvectors for A are normalized so that wTv = 1.

Moreover, the matrix v wT is the projection onto the eigenspace corresponding to r. This
projection is called the Perron projection.

5. 

Collatz–Wielandt formula: for all non-negative non-zero vectors x, let f(x) be the
minimum value of [Ax]i / xi taken over all those i such that xi ≠ 0. Then f is a real valued
function whose maximum over all non-negative non-zero vectors x is the Perron–Frobenius
eigenvalue.

6. 

A "Min-max" Collatz–Wielandt formula takes a form similar to the one above: for all strictly
positive vectors x, let g(x) be the maximum value of [Ax]i / xi taken over i. Then g is a real
valued function whose minimum over all strictly positive vectors x is the Perron–Frobenius
eigenvalue.

7. 

Donsker-Varadhan-Friedland formula: Let p be a probability vector and x a strictly

positive vector. Then [8][9]

8. 

The Perron–Frobenius eigenvalue satisfies the inequalities9. 

These  claims  can  be  found  in  Meyer[10] chapter  8  (https://web.archive.org/web/20100307021652/http:
//www.matrixanalysis.com/Chapter8.pdf) claims 8.2.11–15 page 667 and exercises 8.2.5,7,9 pages 668–669.

The left and right eigenvectors w and v are sometimes normalized so that the sum of their components is equal
to 1; in this case, they are sometimes called stochastic eigenvectors. Often they are normalized so that the
right eigenvector v sums to one, while .

An extension of the theorem to matrices with non-negative entries is also available. In order to highlight the
similarities and differences between the two cases the following points are to be noted: every non-negative
matrix can be obtained as a limit of positive matrices, thus one obtains the existence of an eigenvector with
non-negative components; the corresponding eigenvalue will be non-negative and greater than or equal, in
absolute value, to all other eigenvalues.[11][12] However, the simple examples

show that for non-negative matrices there may exist eigenvalues of the same absolute value as the maximal one
((1) and (−1) – eigenvalues of the first matrix); moreover the maximal eigenvalue may not be a simple root of
the  characteristic  polynomial,  can be  zero  and the  corresponding eigenvector  (1,0)  is  not  strictly  positive
(second  example).  So  it  may  seem  that  most  properties  are  broken  for  non-negative  matrices,  however
Frobenius found the right way to generalize to this case.

The key feature of theory in the non-negative case is to find some special subclass of non-negative matrices—
irreducible matrices— for which a non-trivial generalization is possible. Namely, although the eigenvalues
attaining  the  maximal  absolute  value  may  not  be  unique,  the  structure  of  maximal  eigenvalues  is  under

Non-negative matrices
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control: they have the form ei2πl/hr, where h is an integer called the period of matrix, r is a real strictly positive
eigenvalue, and l  =  0,  1,  ...,  h  − 1. The eigenvector corresponding to r  has strictly positive components (in
contrast with the general case of non-negative matrices, where components are only non-negative). Also all
such eigenvalues are simple roots of the characteristic polynomial. Further properties are described below.

Let A be a square matrix (not necessarily positive or even real). The matrix A is irreducible  if any of the
following equivalent properties holds.

Definition 1 : A does not have non-trivial invariant coordinate subspaces. Here a non-trivial coordinate
subspace  means  a  linear  subspace  spanned  by  any  proper  subset  of  standard  basis  vectors  of  Rn.  More
explicitly, for any linear subspace spanned by standard basis vectors ei1 , ..., eik, 0 < k < n its image under the
action of A is not contained in the same subspace.

Definition 2: A cannot be conjugated into block upper triangular form by a permutation matrix P:

where E and G are non-trivial (i.e. of size greater than zero) square matrices.

If A is non-negative other definitions exist:

Definition 3: For every pair of indices i and j, there exists a natural number m such that (Am)ij is not equal to
0.

Definition 4: One can associate with a matrix A a certain directed graph GA. It has exactly n vertices, where n
is  size  of  A,  and there is  an edge from vertex i  to  vertex j  precisely  when Aij  > 0.  Then the matrix  A  is
irreducible if and only if its associated graph GA is strongly connected.

This notion is somewhat reminiscent of that of a free action of a group; if one could somehow build a group out
of A, then the space Rn would be an irreducible representation. (One can build a group by considering the
exponential .) However, the notion of an irreducible matrix is fundamentally easier to satisfy
than an irreducible representation, because only coordinate subspaces are considered.

A matrix is reducible if it is not irreducible.

Let A be non-negative. Fix an index i and define the period of index i to be the greatest common divisor of
all natural numbers m such that (Am)ii > 0. When A is irreducible, the period of every index is the same and is
called the period of A. In fact, when A  is irreducible, the period can be defined as the greatest common
divisor of the lengths of the closed directed paths in GA (see Kitchens[13] page 16). The period is also called the
index of imprimitivity (Meyer[10] page 674) or the order of cyclicity.

If the period is 1, A is aperiodic.

A matrix A is primitive if it is non-negative and its mth power is positive for some natural number m (i.e. the
same m works for all pairs of indices). It can be proved that primitive matrices are the same as irreducible

Classification of matrices
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aperiodic non-negative matrices.

A positive square matrix is  primitive and a primitive matrix is  irreducible.  All  statements of  the Perron–
Frobenius theorem for positive matrices remain true for primitive matrices. However, a general non-negative
irreducible matrix A may possess several eigenvalues whose absolute value is equal to the spectral radius of A,
so the statements need to be correspondingly modified. Actually the number of such eigenvalues is exactly
equal to the period. Results for non-negative matrices were first obtained by Frobenius in 1912.

Let A  be an irreducible non-negative n  × n  matrix with period h  and spectral  radius ρ(A)  =  r.  Then  the
following statements hold.

The number r is a positive real number and it is an eigenvalue of the matrix A, called the
Perron–Frobenius eigenvalue.

1. 

The Perron–Frobenius eigenvalue r is simple. Both right and left eigenspaces associated with
r are one-dimensional.

2. 

A has a right eigenvector v with eigenvalue r whose components are all positive.3. 

Likewise, A has a left eigenvector w with eigenvalue r whose components are all positive.4. 

The only eigenvectors whose components are all positive are those associated with the
eigenvalue r.

5. 

The matrix A has exactly h (where h is the period) complex eigenvalues with absolute value
r. Each of them is a simple root of the characteristic polynomial and is the product of r with
an hth root of unity.

6. 

Let ω = 2π/h. Then the matrix A is similar to eiωA, consequently the spectrum of A is
invariant under multiplication by eiω (corresponding to the rotation of the complex plane by
the angle ω).

7. 

If h > 1 then there exists a permutation matrix P such that8. 

where the blocks along the main diagonal are zero square matrices.

9. Collatz–Wielandt formula: for all non-negative non-zero vectors x let f(x) be the minimum
value of [Ax]i / xi taken over all those i such that xi ≠ 0. Then f is a real valued function whose
maximum is the Perron–Frobenius eigenvalue.

10. The Perron–Frobenius eigenvalue satisfies the inequalities

The matrix  shows that the (square) zero-matrices along the diagonal may be of different sizes,

the blocks Aj need not be square, and h need not divide n.

Perron–Frobenius theorem for irreducible matrices
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Let A be an irreducible non-negative matrix, then:

(I+A)n−1 is a positive matrix. (Meyer[10] claim 8.3.5 p. 672 (https://web.archive.org
/web/20100307021652/http://www.matrixanalysis.com/Chapter8.pdf)).

1. 

Wielandt's theorem. If |B|<A, then ρ(B)≤ρ(A). If equality holds (i.e. if µ=ρ(A)eiφ is
eigenvalue for B), then B = eiφ D AD−1 for some diagonal unitary matrix D (i.e. diagonal
elements of D equals to eiΘl, non-diagonal are zero).[14]

2. 

If some power Aq is reducible, then it is completely reducible, i.e. for some permutation

matrix P, it is true that: , where Ai are irreducible

matrices having the same maximal eigenvalue. The number of these matrices d is the
greatest common divisor of q and h, where h is period of A.[15]

3. 

If c(x)=xn+ck1 x
n-k1 +ck2 x

n-k2 + ... + cks x
n-ks is the characteristic polynomial of A in which

the only non-zero coefficients are listed, then the period of A equals to the greatest common
divisor for k1, k2, ... , ks.[16]

4. 

Cesàro averages:  where the left and right eigenvectors for A are

normalized so that wTv = 1. Moreover, the matrix v wT is the spectral projection
corresponding to r - Perron projection.[17]

5. 

Let r be the Perron–Frobenius eigenvalue, then the adjoint matrix for (r-A) is positive.[18]6. 

If A has at least one non-zero diagonal element, then A is primitive.[19]7. 

If 0 ≤ A < B, then rA ≤ rB. Moreover, if B is irreducible, then the inequality is strict: rA < rB.8. 

One of the definitions of primitive matrix requires A to be non-negative and there exists m, such that Am  is
positive. One may one wonder how big m  can be, depending on the size of A.  The following answers this
question.

Assume A is non-negative primitive matrix of size n, then An2 − 2n + 2 is positive. Moreover, if
n > 1, there exists a matrix M given below, such that Mk is not positive (but of course still
non-negative) for all k < n2 − 2n + 2, in particular (Mn2 − 2n+1)11 = 0.

[20]

Numerous books have been written on the subject of non-negative matrices, and Perron–Frobenius theory is
invariably a central feature. The following examples given below only scratch the surface of its vast application
domain.

Further properties

Applications
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The Perron–Frobenius theorem does not apply directly to non-negative matrices. Nevertheless, any reducible
square matrix A may be written in upper-triangular block form (known as the normal form of a reducible
matrix)[21]

PAP−1 = 

where P is a permutation matrix and each Bi is a square matrix that is either irreducible or zero. Now if A is
non-negative then so too is each block of PAP−1, moreover the spectrum of A is just the union of the spectra of
the Bi.

The invertibility of A can also be studied. The inverse of PAP−1 (if it exists) must have diagonal blocks of the
form Bi−1 so if any Bi isn't invertible then neither is PAP−1 or A. Conversely let D be the block-diagonal matrix
corresponding to PAP−1, in other words PAP−1 with the asterisks zeroised. If each Bi is invertible then so is D
and D−1(PAP−1) is equal to the identity plus a nilpotent matrix. But such a matrix is always invertible (if Nk = 0
the inverse of 1 − N is 1 + N + N2 + ... + Nk−1) so PAP−1 and A are both invertible.

Therefore, many of the spectral properties of A may be deduced by applying the theorem to the irreducible Bi.
For example, the Perron root is the maximum of the ρ(Bi). While there will still be eigenvectors with non-
negative components it is quite possible that none of these will be positive.

A row (column) stochastic matrix is a square matrix each of whose rows (columns) consists of non-negative
real numbers whose sum is unity. The theorem cannot be applied directly to such matrices because they need
not be irreducible.

If  A  is  row-stochastic  then  the  column  vector  with  each  entry  1  is  an  eigenvector  corresponding  to  the
eigenvalue 1, which is also ρ(A) by the remark above. It might not be the only eigenvalue on the unit circle: and
the associated eigenspace can be multi-dimensional. If A  is row-stochastic and irreducible then the Perron
projection is also row-stochastic and all its rows are equal.

The theorem has particular use in algebraic graph theory. The "underlying graph" of a nonnegative n-square
matrix is the graph with vertices numbered 1, ..., n and arc ij if and only if Aij ≠ 0. If the underlying graph of
such a matrix is strongly connected, then the matrix is irreducible, and thus the theorem applies. In particular,
the adjacency matrix of a strongly connected graph is irreducible.[22][23]

The theorem has a natural interpretation in the theory of finite Markov chains (where it is the matrix-theoretic
equivalent of the convergence of an irreducible finite Markov chain to its stationary distribution, formulated in

Non-negative matrices

Stochastic matrices

Algebraic graph theory

Finite Markov chains
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terms of the transition matrix of the chain; see, for example, the article on the subshift of finite type).

More generally,  it  can be extended to the case of  non-negative compact operators,  which,  in  many ways,
resemble finite-dimensional matrices. These are commonly studied in physics, under the name of transfer
operators,  or  sometimes  Ruelle–Perron–Frobenius operators  (after  David  Ruelle).  In  this  case,  the
leading eigenvalue  corresponds to  the  thermodynamic  equilibrium of  a  dynamical  system,  and  the  lesser
eigenvalues  to  the  decay  modes  of  a  system that  is  not  in  equilibrium.  Thus,  the  theory  offers  a  way  of
discovering  the  arrow of  time  in  what  would  otherwise  appear  to  be  reversible,  deterministic  dynamical
processes, when examined from the point of view of point-set topology.[24]

A common thread in many proofs is the Brouwer fixed point theorem. Another popular method is that of
Wielandt (1950). He used the Collatz–Wielandt formula described above to extend and clarify Frobenius's
work.[25] Another proof is based on the spectral theory[26] from which part of the arguments are borrowed.

If A is a positive (or more generally primitive) matrix, then there exists a real positive eigenvalue r (Perron–
Frobenius eigenvalue or Perron root), which is strictly greater in absolute value than all other eigenvalues,
hence r is the spectral radius of A.

This statement does not hold for general non-negative irreducible matrices, which have h eigenvalues with the
same absolute eigenvalue as r, where h is the period of A.

Let A be a positive matrix, assume that its spectral radius ρ(A) = 1 (otherwise consider A/ρ(A)). Hence, there
exists an eigenvalue λ on the unit circle, and all the other eigenvalues are less or equal 1 in absolute value.
Assume that λ ≠ 1. Then there exists a positive integer m such that Am is a positive matrix and the real part of
λm is negative. Let ε be half the smallest diagonal entry of Am and set T = Am − εI which is yet another positive
matrix. Moreover, if Ax = λx then Amx = λmx thus λm − ε is an eigenvalue of T. Because of the choice of m this
point lies outside the unit disk consequently ρ(T) > 1. On the other hand, all the entries in T are positive and
less than or equal to those in Am so by Gelfand's formula ρ(T) ≤ ρ(Am) ≤ ρ(A)m = 1. This contradiction means
that λ=1 and there can be no other eigenvalues on the unit circle.

Absolutely the same arguments can be applied to the case of primitive matrices; we just need to mention the
following simple lemma, which clarifies the properties of primitive matrices.

Given a non-negative A, assume there exists m, such that Am  is positive, then Am+1, Am+2, Am+3,...  are all

Compact operators

Proof methods

Perron root is strictly maximal eigenvalue for positive (and
primitive) matrices

Proof for positive matrices

Lemma
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positive.

Am+1 = AAm, so it can have zero element only if some row of A is entirely zero, but in this case the same row of
Am will be zero.

Applying the same arguments as above for primitive matrices, prove the main claim.

For a positive (or more generally irreducible non-negative) matrix A  the dominant eigenvector is  real  and
strictly positive (for non-negative A respectively non-negative.)

This can be established using the power method, which states that for a sufficiently generic (in the sense
below) matrix A the sequence of vectors bk+1 = Abk / | Abk | converges to the eigenvector with the maximum
eigenvalue. (The initial vector b0 can be chosen arbitrarily except for some measure zero set). Starting with a
non-negative vector b0 produces the sequence of non-negative vectors bk. Hence the limiting vector is also
non-negative.  By  the  power  method  this  limiting  vector  is  the  dominant  eigenvector  for  A,  proving  the
assertion. The corresponding eigenvalue is non-negative.

The proof requires two additional arguments. First, the power method converges for matrices which do not
have several eigenvalues of the same absolute value as the maximal one. The previous section's argument
guarantees this.

Second,  to  ensure  strict  positivity  of  all  of  the  components  of  the  eigenvector  for  the  case  of  irreducible
matrices. This follows from the following fact, which is of independent interest:

Lemma: given a positive (or more generally irreducible non-negative) matrix A and v as any non-
negative eigenvector for A, then it is necessarily strictly positive and the corresponding eigenvalue is
also strictly positive.

Proof. One of the definitions of irreducibility for non-negative matrices is that for all indexes i,j there exists m,
such that (Am)ij is strictly positive. Given a non-negative eigenvector v, and that at least one of its components
say j-th is strictly positive, the corresponding eigenvalue is strictly positive, indeed, given n such that (An)ii >0,
hence: rnvi = Anvi ≥ (An)iivi >0. Hence r is strictly positive. The eigenvector is strict positivity. Then given m,
such that (Am)ij >0, hence: rmvj = (Amv)j ≥ (Am)ijvi >0, hence vj  is strictly positive, i.e., the eigenvector is
strictly positive.

This section proves that the Perron–Frobenius eigenvalue is a simple root of the characteristic polynomial of
the  matrix.  Hence  the  eigenspace  associated  to  Perron–Frobenius  eigenvalue  r  is  one-dimensional.  The
arguments here are close to those in Meyer.[10]

Given a strictly positive eigenvector v corresponding to r and another eigenvector w with the same eigenvalue.
(Vector w can be chosen to be real, because A and r are both real, so the null space of A-r has a basis consisting
of real vectors). Assuming at least one of the components of w is positive (otherwise multiply w by −1). Given
maximal possible α such that u=v- α w is non-negative, then one of the components of u is zero, otherwise α is

Power method and the positive eigenpair

Multiplicity one
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not maximum. Vector u is an eigenvector. It is non-negative, hence by the lemma described in the previous
section non-negativity implies strict positivity for any eigenvector. On the other hand, as above at least one
component of u is zero. The contradiction implies that w does not exist.

Case: There are no Jordan cells corresponding to the Perron–Frobenius eigenvalue r and all other eigenvalues
which have the same absolute value.

If there is a Jordan cell, then the infinity norm (A/r)k∞ tends to infinity for k → ∞ , but that contradicts the
existence of the positive eigenvector.

Given r = 1, or A/r. Letting v be a Perron–Frobenius strictly positive eigenvector, so Av=v, then:

 So Ak∞ is bounded for all k. This gives

another proof that there are no eigenvalues which have greater absolute value than Perron–Frobenius one. It
also contradicts the existence of the Jordan cell for any eigenvalue which has absolute value equal to 1 (in
particular for the Perron–Frobenius one), because existence of the Jordan cell implies that Ak∞ is unbounded.
For a two by two matrix:

hence Jk∞ = |k + λ| (for |λ| = 1), so it tends to infinity when k does so. Since Jk = C−1 AkC, then Ak ≥ Jk/ (C−1 C
),  so  it  also  tends  to  infinity.  The  resulting  contradiction  implies  that  there  are  no  Jordan  cells  for  the
corresponding eigenvalues.

Combining  the  two  claims  above  reveals  that  the  Perron–Frobenius  eigenvalue  r  is  simple  root  of  the
characteristic polynomial. In the case of nonprimitive matrices, there exist other eigenvalues which have the
same absolute value as r. The same claim is true for them, but requires more work.

Given positive (or more generally irreducible non-negative matrix) A, the Perron–Frobenius eigenvector is the
only (up to multiplication by constant) non-negative eigenvector for A.

Other eigenvectors must contain negative or complex components since eigenvectors for different eigenvalues
are orthogonal in some sense, but two positive eigenvectors cannot be orthogonal, so they must correspond to
the same eigenvalue, but the eigenspace for the Perron–Frobenius is one-dimensional.

Assuming there exists an eigenpair (λ, y) for A, such that vector y is positive, and given (r, x), where x – is the
left Perron–Frobenius eigenvector for A (i.e. eigenvector for AT), then rxTy = (xT A) y = xT (Ay) = λxTy, also xT

y > 0, so one has: r = λ. Since the eigenspace for the Perron–Frobenius eigenvalue r is one-dimensional, non-
negative eigenvector y is a multiple of the Perron–Frobenius one.[27]

Given a positive (or more generally irreducible non-negative matrix) A, for all non-negative non-zero vectors x
and f(x) as the minimum value of [Ax]i  / xi  taken over all those i  such that xi  ≠  0, then f  is  a real valued

No other non-negative eigenvectors

Collatz–Wielandt formula
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function whose maximum is the Perron–Frobenius eigenvalue r.

Here, r is attained for x taken to be the Perron–Frobenius eigenvector v. The proof requires that values f on the
other vectors are less or equal. Given a vector x. Let ξ=f(x), so 0≤ξx≤Ax and w to be the right eigenvector for A,
then wT ξx ≤ wT (Ax) = (wT A)x = r wT x . Hence ξ≤r.[28]

Let A be a positive (or more generally, primitive) matrix, and let r be its Perron–Frobenius eigenvalue.

There exists a limit Ak/rk for k → ∞, denote it by P.1. 

P is a projection operator: P2 = P, which commutes with A: AP = PA.2. 

The image of P is one-dimensional and spanned by the Perron–Frobenius eigenvector v
(respectively for PT—by the Perron–Frobenius eigenvector w for AT).

3. 

P = vwT, where v,w are normalized such that wT v = 1.4. 

Hence P is a positive operator.5. 

Hence P is a spectral projection for the Perron–Frobenius eigenvalue r, and is called the Perron projection.
The above assertion is not true for general non-negative irreducible matrices.

Actually the claims above (except claim 5) are valid for any matrix M such that there exists an eigenvalue r
which is strictly greater than the other eigenvalues in absolute value and is the simple root of the characteristic
polynomial. (These requirements hold for primitive matrices as above).

Given that M is diagonalizable, M is conjugate to a diagonal matrix with eigenvalues r1, ... , rn on the diagonal
(denote r1 = r). The matrix Mk/rk will be conjugate (1, (r2/r)k, ... , (rn/r)k), which tends to (1,0,0,...,0), for k →
∞, so the limit exists. The same method works for general M (without assuming that M is diagonalizable).

The projection and commutativity properties are elementary corollaries of the definition: MMk/rk = Mk/rk M ;
P2 = lim M2k/r2k = P. The third fact is also elementary: M(Pu)= M lim Mk/rk u = lim rMk+1/rk+1u, so taking
the limit yields M(Pu) = r(Pu), so image of P lies in the r-eigenspace for M, which is one-dimensional by the
assumptions.

Denoting by v, r-eigenvector for M (by w for MT). Columns of P are multiples of v, because the image of P is
spanned by it. Respectively, rows of w. So P takes a form (a v wT), for some a. Hence its trace equals to (a wT

v). Trace of projector equals the dimension of its image. It was proved before that it is not more than one-
dimensional. From the definition one sees that P  acts identically on the r-eigenvector for M.  So it is one-
dimensional. So choosing (wTv) = 1, implies P = vwT.

For any non-nonegative matrix A its Perron–Frobenius eigenvalue r satisfies the inequality:

This  is  not  specific  to  non-negative  matrices:  for  any  matrix  A  with  an  eigenvalue   it  is  true  that

Perron projection as a limit: Ak/rk

Inequalities for Perron–Frobenius eigenvalue
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. This is an immediate corollary of the Gershgorin circle theorem. However another proof is
more direct:

Any matrix induced norm satisfies the inequality  for any eigenvalue  because, if  is a corresponding
eigenvector,  .  The  infinity  norm  of  a  matrix  is  the  maximum  of  row  sums:

 Hence the desired inequality is exactly  applied to the non-negative matrix A.

Another inequality is:

This fact is specific to non-negative matrices; for general matrices there is nothing similar. Given that A  is
positive (not just non-negative), then there exists a positive eigenvector w such that Aw = rw and the smallest
component of w (say wi) is 1. Then r = (Aw)i ≥ the sum of the numbers in row i of A. Thus the minimum row
sum gives a lower bound for r and this observation can be extended to all non-negative matrices by continuity.

Another  way  to  argue  it  is  via  the  Collatz-Wielandt  formula.  One  takes  the  vector  x  =   (1,   1,   ...,   1)  and
immediately obtains the inequality.

The proof now proceeds using spectral decomposition. The trick here is to split the Perron root from the other
eigenvalues.  The spectral  projection associated with the Perron root is  called the Perron projection and it
enjoys the following property:

The Perron projection of an irreducible non-negative square matrix is a positive matrix.

Perron's findings and also (1)–(5) of the theorem are corollaries of this result. The key point is that a positive
projection always has rank one. This means that if A is an irreducible non-negative square matrix then the
algebraic and geometric multiplicities of its Perron root are both one. Also if P is its Perron projection then AP
= PA  =  ρ(A)P  so  every  column of  P  is  a  positive  right  eigenvector  of  A  and  every  row is  a  positive  left
eigenvector. Moreover, if Ax = λx then PAx = λPx = ρ(A)Px which means Px = 0 if λ ≠ ρ(A). Thus the only
positive eigenvectors are those associated with ρ(A). If A is a primitive matrix with ρ(A) = 1 then it can be
decomposed as P ⊕ (1 − P)A so that An = P + (1 − P)An. As n increases the second of these terms decays to zero
leaving P as the limit of An as n → ∞.

The power method is a convenient way to compute the Perron projection of a primitive matrix. If v and w are
the positive row and column vectors that it generates then the Perron projection is just wv/vw. It should be
noted that the spectral projections aren't neatly blocked as in the Jordan form. Here they are overlaid and each
generally has complex entries extending to all four corners of the square matrix. Nevertheless, they retain their
mutual orthogonality which is what facilitates the decomposition.

Further proofs

Perron projection

Peripheral projection
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The analysis when A is irreducible and non-negative is broadly similar. The Perron projection is still positive
but there may now be other eigenvalues of modulus ρ(A) that negate use of the power method and prevent the
powers of (1  − P)A  decaying as in the primitive case whenever ρ(A) = 1.  So we consider the peripheral
projection, which is the spectral projection of A corresponding to all the eigenvalues that have modulus ρ(A).
It may then be shown that the peripheral projection of an irreducible non-negative square matrix is a non-
negative matrix with a positive diagonal.

Suppose in addition that ρ(A) = 1 and A has h eigenvalues on the unit circle. If P is the peripheral projection
then the matrix R = AP = PA is non-negative and irreducible, Rh = P, and the cyclic group P, R, R2, ...., Rh−1

represents the harmonics of A. The spectral projection of A at the eigenvalue λ on the unit circle is given by the
formula  .  All  of  these  projections  (including  the  Perron  projection)  have  the  same  positive
diagonal, moreover choosing any one of them and then taking the modulus of every entry invariably yields the
Perron projection. Some donkey work is still needed in order to establish the cyclic properties (6)–(8) but it's
essentially just a matter of turning the handle. The spectral decomposition of A is given by A = R ⊕ (1 − P)A so
the difference between An and Rn is An − Rn = (1 − P)An representing the transients of An which eventually
decay to zero. P may be computed as the limit of Anh as n → ∞.

The matrices L = , P = , T = , M =  provide simple examples of what

can  go  wrong  if  the  necessary  conditions  are  not  met.  It  is  easily  seen  that  the  Perron  and  peripheral
projections of L are both equal to P, thus when the original matrix is reducible the projections may lose non-
negativity and there is no chance of expressing them as limits of its powers. The matrix T is an example of a
primitive matrix with zero diagonal. If the diagonal of an irreducible non-negative square matrix is non-zero
then the matrix must be primitive but this example demonstrates that the converse is false. M is an example of
a matrix with several missing spectral teeth. If ω = eiπ/3 then ω6 = 1 and the eigenvalues of M are {1,ω2,ω3,ω4}
so ω and ω5 are both absent.

A problem that causes confusion is a lack of standardisation in the definitions. For example, some authors use
the terms strictly positive and positive to mean > 0 and ≥ 0 respectively. In this article positive means > 0 and
non-negative  means ≥  0. Another vexed area concerns decomposability  and reducibility: irreducible  is  an
overloaded term. For avoidance of doubt a non-zero non-negative square matrix A such that 1 + A is primitive
is sometimes said to be connected. Then irreducible non-negative square matrices and connected matrices are
synonymous.[29]

The nonnegative eigenvector is often normalized so that the sum of its components is equal to unity; in this
case,  the  eigenvector  is  the  vector  of  a  probability  distribution  and  is  sometimes  called  a  stochastic
eigenvector.

Cyclicity

Caveats

Terminology
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Perron–Frobenius eigenvalue and dominant eigenvalue are alternative names for the Perron root. Spectral
projections are also known as spectral projectors and spectral idempotents. The period is sometimes referred
to as the index of imprimitivity or the order of cyclicity.

Z-matrix (mathematics)

M-matrix

P-matrix

Hurwitz matrix

Metzler matrix (Quasipositive matrix)
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