Expectation of binomial random variables

Kevin K. Linklin@math.arizona.edu

October 5, 2019

Here is an alternative to the derivation given in the text, making use of a different trick. Let n be a positive integer and $p \in[0,1]$. Our goal is to calculate the mean of a binomial random variable $X \sim \operatorname{Bin}(n, p)$. That is, we want to evaluate the sum

$$
\begin{equation*}
E[X]=\sum_{k=0}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k} \tag{1}
\end{equation*}
$$

Here is the trick: consider the function of two real variables

$$
\begin{equation*}
f(p, q)=\sum_{k=0}^{n}\binom{n}{k} p^{k} q^{n-k} \tag{2}
\end{equation*}
$$

Note

$$
\begin{equation*}
f(p, q)=(p+q)^{n} \tag{3}
\end{equation*}
$$

by the Binomial Theorem. In particular, $f(p, 1-p)=1$, which is just a restatement of the fact that the binomial distribution is a probability mass function.

Now, if we differentiate f with respect to p, we get

$$
\begin{equation*}
\frac{\partial}{\partial p} f(p, q)=\sum_{k=1}^{n} k\binom{n}{k} p^{k-1} q^{n-k} \tag{4}
\end{equation*}
$$

(We start the sum at $k=1$ because the $k=0$ term is just q^{n}, and $\frac{\partial}{\partial p} q^{n}=0$.) Thus, we have

$$
\begin{aligned}
p \frac{\partial}{\partial p} f(p, q) & =p \sum_{k=1}^{n} k\binom{n}{k} p^{k-1} q^{n-k} \\
& =\sum_{k=1}^{n} p k\binom{n}{k} p^{k-1} q^{n-k} \\
& =\sum_{k=1}^{n} k\binom{n}{k} p^{k} q^{n-k}
\end{aligned}
$$

If we now set $q=1-p$, we get

$$
\begin{equation*}
p\left(\frac{\partial}{\partial p} f(p, q)\right)_{q=1-p}=\sum_{k=1}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k}=E[X] . \tag{5}
\end{equation*}
$$

So, if we can calculate $p \frac{\partial}{\partial p} f(p, q)$, we are done. But we have another expression for $f(p, q)$, namely Eq. (3), which tells us

$$
\begin{aligned}
p \frac{\partial}{\partial p} f(p, q) & =p \frac{\partial}{\partial p}\left((p+q)^{n}\right) \\
& =p n(p+q)^{n-1} .
\end{aligned}
$$

Plugging in $q=1-p$, we get $E[X]=n p$.

