Expectation of sums of random variables

Kevin K. Linklin@math.arizona.edu

October 5, 2019

Here is a better explanation of the binomial example from Friday. Consider a sequence of n trials, each with probability of success p. The sample space Ω consists of the 2^{n} possible outcomes, each represented by a sequence of 0's and 1's: $\Omega=\left\{\left(\omega_{1}, \cdots, \omega_{n}\right) \mid \omega_{i} \in\{0,1\}\right\}$. We can define a random variable X so that for each outcome $\omega=\left(\omega_{1}, \cdots, \omega_{n}\right) \in \Omega, X(\omega)$ is just the number whose binary expansion is $\omega_{1} \cdots \omega_{n}$. For example, for $n=3, X(011)=3$. We can then define

$$
\begin{equation*}
g_{i}(x)=i \text { th binary digit of } x \tag{1}
\end{equation*}
$$

For example

$$
\begin{gathered}
g_{1}(0)=0 \\
g_{1}(1)=1 \\
g_{1}(2)=0 \\
g_{1}(3)=1 \\
\vdots
\end{gathered}
$$

and

$$
\begin{aligned}
& g_{2}(0)=0 \\
& g_{2}(1)=0 \\
& g_{2}(2)=1 \\
& g_{2}(3)=1
\end{aligned}
$$

etc.
With this representation, we then have $X_{i}=g_{i}(X)$, where X is the random variable above and $X_{i}=1$ if the i th trial succeeds and $X_{i}=0$ if it fails. That is, the X_{i} are Bernoulli random variables. The rest is as shown in class: from the formula

$$
\begin{equation*}
E[g(X)]=\sum_{k} g(k) \cdot P(X=k) \tag{2}
\end{equation*}
$$

we have $E\left[X_{1}+\cdots+X_{n}\right]=E\left[g_{1}(X)+\cdots+g_{n}(X)\right]=E\left[g_{1}(X)\right]+\cdots+E\left[g_{n}(X)\right]=n p$.

