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This is the last example from class today. Suppose the random variables X, Y are uniformly
distributed over the disc D = {(x, y) | x2+ y? = 1} of radius 1, so that their joint pdf is
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even though (as was shown in class last week) X and Y are independent.
There are a few different ways to show this. The first is to evaluate the integral:
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This is straightforward to evaluate, and gives 0.
A second, better (IMO) method is the following: observe that f(x,y) = f(—x,y) for all
(x,y), since if (x, y) € D then we have f(x,y) = f(—x,y) =1/n, and if (x, y) ¢ D then we

just have f(x,y) = f(—x,y) = 0. This means
Cov(X,Y) = E[XY]
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We now substitute u = —x, so that du = —dx and we have

—J f (—u)-y f(u,y)dy du. (3)
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Reverse the limits on the outside integral, we get

J f (—u)'J’f(u,y)dyduz—f J u-y f(u,y)dy du.

Except for using a different dummy variable for integration, the integral in the last line is just
E[XY] again. So the above shows E[XY ] = —E[XY ]. This can only be the case if E[XY ] =0.

The reason I like this second proof is it illustrates how symmetries in a problem can lead
to random variables being uncorrelaed. In many applications, random variables that are not
independent are nevertheless uncorrelated due to symmetries in the problem.



