Homework 8

klin@math.arizona.edu

March 25, 2020 Due Tuesday 3/31 at 11:59p on Gradescope

Graded problems.

- Exercise 1.74 from the text(*)
- Exercise 1.77 from the text
- A1 Consider a Markov chain X_n with state space $S = \{0, 1, 2, \dots\}$ and transition probabilities

$$p(x, x+1) = p_x \tag{1a}$$

$$p(x, x-1) = q_x \qquad \text{if } x > 0 \tag{1b}$$

$$p(0,0) = q_0$$
 if $x > 0$ (1c)

(All other transitions have zero probability.) In the above, p_0, p_1, \cdots are numbers in (0, 1), and $q_x = 1 - p_x$. This generalizes the reflected random walk example.

- (a) Suppose the chain has a stationary distribution π . What equation does it satisfy?
- (b) Using $\sum_{x} \pi(x) = 1$ the fact that $\lim_{x \to \infty} \pi(x) = 0$ (because $\sum_{x=0}^{\infty} \pi(x) = 1$), show that *if* there is a stationary distribution, then it must satisfy detailed balance.
- (c) In terms of the ratios p_x/q_{x+1} , give a condition that guarantees the existence of a stationary distribution.
- A2 For the reflected random walk with $p = q = \frac{1}{2}$, let N > 0 be fixed, and consider

$$g(x) = E_x V_{0,N} \tag{2}$$

where

$$V_{0,N} = \min\{n \ge 0 \mid X_n = 0 \text{ or } X_n = N\}.$$
(3)

Show that $g(x) = Nx - x^2$ for 0 < x < N (**).

A3 Show that if a Markov chain with transition probability function p(x, y) is irreducible and has a stationary distribution $\pi(x)$, then $\pi(x) > 0$ for all states x (***).

Suggested problems. Exercises 1.75, 1.76 from the text.

Hints. Here are some hints for those who want them.