Notes on Example 2.1

klin@math.arizona.edu

April 18, 2020

I'd like to expand on Example 2.1, because the text has an interesting solution to this standard problem. Here is the mathematical problem: suppose we have two independent exponential random S and T with rates λ and μ, respectively. What is $E(S \vee T)$? (Recall that for two real numbers x and y, " $x \vee y$ " means the larger of x and y.) The more pedantic approach is to write down the joint PDF

$$
\begin{equation*}
f_{S T}(s, t)=\lambda \mu e^{-\lambda_{s}-\mu t} ; s, t \geqslant 0 \tag{1}
\end{equation*}
$$

then compute the expectation

$$
\begin{equation*}
E(S \vee T)=\lambda \mu \int_{0}^{\infty} \int_{0}^{\infty}(s \vee t) e^{-\lambda s-\mu t} d s d t \tag{2}
\end{equation*}
$$

The integral can be split into two pieces, according to whether $s<t$ or $s>t$, and evaluated. A more elegant solution was given in the text: we know $S \wedge T$ (the minimum of S and T) is exponential with rate $\lambda+\mu$. Now, if $S<T$ (an event of probability $\lambda /(\lambda+\mu)$), then the expected time for T is again $E T$, since exponential random variables are memoryless. Likewise, if $T<S$, then the expected time for S is $E S$. Putting all this together, we have

$$
\begin{align*}
E(S \vee T) & =E(S \wedge T)+P(S<T) \cdot E T+P(T<S) \cdot E S \tag{3a}\\
& =\frac{1}{\lambda+\mu}+\frac{\lambda}{\lambda+\mu} \cdot \frac{1}{\mu}+\frac{\mu}{\lambda+\mu} \cdot \frac{1}{\lambda} . \tag{3b}
\end{align*}
$$

This is a very slick argument, but you may feel it's a little too slick. The purpose of this note is to expand on it, so it doesn't look so slick.

Let's start with $E(S \vee T)$, and condition on which exponential waiting time is smaller:

$$
\begin{align*}
E(S \vee T) & =E(S \vee T \mid S<T) \cdot P(S<T)+E(S \vee T \mid T<S) \cdot P(T<S) \tag{4a}\\
& =E(T \mid S<T) \cdot P(S<T)+E(S \mid T<S) \cdot P(T<S) \tag{4b}
\end{align*}
$$

Let's now compute $E(T \mid S<T)$, intentionally writing things in more abstract notation so that the key step is more apparent:

$$
\begin{align*}
& E(T \mid S<T) \cdot P(S<T) \tag{5a}\\
= & \int_{0}^{\infty} \int_{s}^{\infty} t \cdot f_{S}(s) f_{T}(t) d t d s \tag{5b}\\
= & \int_{0}^{\infty} f_{S}(s) \int_{s}^{\infty} t \cdot f_{T}(t \mid T>s) P(T>s) d t d s \tag{5c}\\
= & \int_{0}^{\infty} f_{S}(s) P(T>s) \underbrace{\int_{0}^{\infty} t \cdot f_{T}(t \mid T>s) d t}_{(*)} d s \tag{5d}
\end{align*}
$$

where

$$
f_{T}(t \mid T>s)=\left\{\begin{align*}
\frac{f_{T}(t)}{P(T>s)}, & t>s \tag{6}\\
0, & t<s
\end{align*}\right.
$$

is the conditional PDF of T given $T>s$ and $(*)$ is the corresponding conditional expectation $E(T \mid T>s)$. Observe now that

$$
\begin{align*}
f_{T}(t \mid T>s) & =\frac{d}{d t} P(T \leqslant t \mid T>s) \tag{7a}\\
& =\frac{d}{d t}(1-P(T>t \mid T>s)) \tag{7b}\\
& =\frac{d}{d t}(1-P(T>t-s)) \tag{7c}\\
& =\frac{d}{d t} P(T \leqslant t-s) \tag{7d}
\end{align*}
$$

The crucial step was from Eq. (7b) to (7c), where we used the memory less property of the exponential distribution. From the above, we get

$$
\begin{equation*}
f_{T}(t \mid T>s)=f_{T}(t-s) \tag{8}
\end{equation*}
$$

(This could have obtained with a couple lines of algebra, but then it would not be so clear where we used the memoryless property!) Substituting this into (*) in Eq. (5), we get

$$
\begin{align*}
E(T \mid T>s) & =\int_{s}^{\infty} t \cdot f_{T}(t-s) d t \tag{9a}\\
& =\int_{0}^{\infty}(t+s) \cdot f_{T}(t) d t \tag{9b}\\
& =s+E T . \tag{9c}
\end{align*}
$$

(This formula can also be anticipated by the same argument used to derive Eq. (3).) So Eq. (5) becomes

$$
\begin{equation*}
E(T \mid S<T) \cdot P(S<T)=\int_{0}^{\infty} f_{S}(s) P(T>s)(E T+s) d s \tag{10}
\end{equation*}
$$

Finally, plugging in $f_{S}(s)=\lambda e^{-\lambda s}$ and $P(T>s)=e^{-\mu s}$, we get

$$
\begin{align*}
E(T \mid S<T) & =\lambda \int_{0}^{\infty} e^{-(\lambda+\mu) s}(1 / \mu+s) d s \tag{11a}\\
& =\frac{\lambda}{\lambda+\mu}\left(\frac{1}{\mu}+\frac{1}{\lambda+\mu}\right) . \tag{11b}
\end{align*}
$$

Incidentally, this means

$$
\begin{equation*}
E(T \mid S<T)=\frac{1}{\mu}+\frac{1}{\lambda+\mu}, \tag{12}
\end{equation*}
$$

which we could also have obtained using the "slick" argument.
Similarly,

$$
\begin{equation*}
E(S \mid T<S)=\frac{1}{\lambda}+\frac{1}{\lambda+\mu} \tag{13}
\end{equation*}
$$

so

$$
\begin{equation*}
E(S \vee T)=\frac{\lambda}{\lambda+\mu}\left(\frac{1}{\mu}+\frac{1}{\lambda+\mu}\right)+\frac{\mu}{\lambda+\mu}\left(\frac{1}{\lambda}+\frac{1}{\lambda+\mu}\right) \tag{14}
\end{equation*}
$$

which is equivalent to Eq. (3b).

