lec03-gamblers

January 26, 2020

Gambler's ruin: how likely is the gambler still in the game after n steps?
[1]:

```
using PyPlot
```

[2]:

```
## Function to construct the transition matrix.
## Note in Julia matrix indices start with 1,
## so all the indices here are off by 1, i.e.,
## 1 really means 0, 2 really means 1, etc.
function transmat(N;p=0.4)
    P = zeros(N+1,N+1)
    q = 1-p
    P[1,1] = P[N+1,N+1] = 1
    for i=2:N
        P[i,i-1]=q
        P[i,i+1]=p
    end
    P
end
```

[2] :
transmat (generic function with 1 method)
[3] :
[3]:

4×4	Array $\{$ Float 64,2$\}$		
1.0	0.0	0.0	0.0
0.6	0.0	0.4	0.0
0.0	0.6	0.0	0.4
0.0	0.0	0.0	1.0

[4](aliveprob):

```
## Use the above to calculate the probability of being alive after n steps,u
    ->starting with XO dollars.
function aliveprob(XO,n; N=3, p=0.4)
    P=transmat(N;p=p)
    1. - (P^n)[X0+1,1]
end
```

Probability of being in the game after n steps, starting with X_{0} dollars for different values of X_{0}.
[5]:

```
let nl=0:1000,
    N=100
    for XO in [20,50,80,90,95,99]
        plot(nl,map(n->aliveprob(XO,n;N=N),nl),".-"; label="XO=$XO")
    end
    axis([minimum(nl),maximum(nl),0,1])
    legend()
    grid()
    xlabel("timestep n")
    ylabel("Probability of being alive")
end
```


[5]: PyObject Text(24.000000000000007, 0.5, 'Probability of being alive')

Probabiliity of being in the game after $n=400$ steps, as a function of X_{0}.
[6]:

```
let n=400,
    N=100,
    X01 = [10, 20,30,40,50,60,70,80,90,95,99]
```

```
    plot(XOl,map(XO->aliveprob(XO,n;N=N),XOl),"o-")
    axis([minimum(X01),maximum(X01),0,1])
    grid()
    xlabel(L"initial amount $X_O$")
    ylabel("Probability of being alive")
    title("n=$n")
end
```


[6]: PyObject Text(0.5, 1, 'n=400')
[]: \qquad

