Lac 8 2/11/20

Ex. 1
(0) 1
1×1
Transition matrix

$$
P=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

$$
p^{t}-\lambda I \text { with } \lambda_{2} 1:
$$

$$
\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]-\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 1 & -1
\end{array}\right]
$$

Solve for $\pi^{t}=\left[\begin{array}{l}\pi(1) \\ \pi(2) \\ \pi(3)\end{array}\right]$ in

$$
\left(P^{t}-I\right) \pi^{t}=0
$$

Augmented matrix

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
-1 & 0 & 1 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \Rightarrow \begin{array}{r}
-\pi(1)+\pi(3)=0 \\
-\pi(2)+\pi(3)=0
\end{array}}
\end{aligned}
$$

se $\quad \pi(1)=\pi(3)$

$$
\pi(2)=\pi(3)
$$

Sim $\pi(1)+\pi(2)+\pi(3)=1$, we how

$$
\pi(1)=\pi(2)=\pi(3)=\frac{1}{3} .
$$

2×2
Gambler's Ruin, $\quad \omega=2$

$$
\text { 1, } 40.6
$$

Transition Matrix

$$
P=\begin{aligned}
& 0 \\
& 1 \\
& 2
\end{aligned}\left[\begin{array}{ccc}
0 & 1 & 2 \\
1 & 0 & 0 \\
0.6 & 0 & 0.4 \\
0 & 0 & 1
\end{array}\right]
$$

Transpose \& subtract λI with $\lambda=1$:

$$
\begin{aligned}
P^{t}-I & =\left[\begin{array}{ccc}
1 & 0.6 & 0 \\
0 & 0 & 0 \\
0 & 0.4 & 1
\end{array}\right]-\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{lll}
0 & 0.6 & 0 \\
0 & -1 & 0 \\
0 & 0.4 & 0
\end{array}\right]
\end{aligned}
$$

Find a^{t} se

$$
\left(p^{t}-I\right) \pi^{t}=0
$$

Row reduction of anymented matrix

$$
\left[\begin{array}{cccc}
0 & 0.6 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0.4 & 0 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0.4 & 0 & 0
\end{array}\right]
$$

(Multiply pow $\left\{\right.$ by $\frac{1}{0.6}$)

$$
\begin{aligned}
& \left.\Rightarrow\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \begin{array}{l}
\left(\begin{array}{l}
\text { abtact }
\end{array}-1 \times \text { now } 1\right. \\
\text { form now } 2 \\
\text { for now 3 }
\end{array}\right) 0.4 \times \operatorname{row} 1
\end{aligned}
$$

So any $\pi(1), \pi(3) \in[0,1]$ with $\pi(1)+\pi(3)=1$ is stationary.
In purtionlar $\pi=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ a $\pi=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ are two linewly indepainte solutions.

Sims the redvent row echelon Som hos i conzero row, rank $=1$ and unlit $y=2$, se $\operatorname{dim}($ solution span $)=2$, and \checkmark the span of $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. These two seativany distimerimo cornesper to the two absorbing states.

