Lecture 12 notes

klin@math.arizona.edu

February 25, 2020

Today we discussed

- The existence of stationary distributions (Theorem 1.24), with a partial proof, up to showing

$$
\begin{equation*}
\sum_{z \in S} \mu_{x}(z) p(z, y)=\mu_{x}(y) \tag{1}
\end{equation*}
$$

Note some of the details were left out of the text and also the lecture; you will fill it in for Homework 6. (The rest of the proof is pretty clearly explained in the text.)

- The Perron-Frobenius Theorem.

Theorem 1.24. Here is a cleaned up proof of the following part of Theorem 1.24: suppose $\left(X_{n}\right)$ is an irreducible chain where every state is recurrent. For $x, y \in S$, let

$$
\begin{equation*}
\mu_{x}(y)=\sum_{n=0}^{\infty} P_{x}\left(X_{n}=y, T_{x}>n\right) \tag{2}
\end{equation*}
$$

We began by observing that

$$
\begin{align*}
\sum_{z} \mu_{x}(z) p(z, y) & =\sum_{z} \sum_{n=0}^{\infty} P_{x}\left(X_{n}=z, T_{x}>n\right) p(z, y) \tag{3a}\\
& =\sum_{n=0}^{\infty} \sum_{z} P_{x}\left(X_{n}=z, T_{x}>n\right) P\left(X_{n+1}=y \mid X_{n}=z\right) \tag{3b}
\end{align*}
$$

If $n=0$, then (as explained in class)

$$
\begin{equation*}
\sum_{z} P_{x}\left(X_{0}=z, T_{x}>0\right) P\left(X_{n+1}=y \mid X_{n}=z\right)=p(x, y) \tag{4}
\end{equation*}
$$

If $n>0$, then $P_{x}\left(X_{n}=z, T_{x}>n\right)=0$ if $z=x$. So we have

$$
\begin{equation*}
\sum_{z} \mu_{x}(z) p(z, y)=p(x, y)+\sum_{n=1}^{\infty} \sum_{z \neq x} P_{x}\left(T_{x}>n \mid X_{n}=z\right) P_{x}\left(X_{n+1}=y \mid X_{n}=z\right) P_{x}\left(X_{n}=z\right) \tag{5}
\end{equation*}
$$

Recall now that for a Markov chain, the future and the past are conditionally independent given the present. (This is on Homework 6.) This and $z \neq x$ imply

$$
\begin{aligned}
& P_{x}\left(T_{x}>n \mid X_{n}=z\right) P_{x}\left(X_{n+1}=y \mid X_{n}=z\right) P_{x}\left(X_{n}=z\right) \\
& =P_{x}\left(T_{x}>n, X_{n+1}=y, X_{n}=z\right) .
\end{aligned}
$$

Up to this point, all was as discussed in class.
We now observe that if $y \neq x$, then

$$
\begin{equation*}
P_{x}\left(T_{x}>n, X_{n+1}=y, X_{n}=z\right)=P_{x}\left(T_{x}>n+1, X_{n+1}=y, X_{n}=z\right) \tag{6}
\end{equation*}
$$

because knowing $X_{n+1}=y$ and $x \neq y$, we must have $T_{x} \neq n+1$, so that $T_{x}>n+1$ (since $T_{x}>n$ to start with). So

$$
\begin{align*}
\sum_{z} \mu_{x}(z) p(z, y) & =p(x, y)+\sum_{n=1}^{\infty} \sum_{z \neq x} P_{x}\left(T_{x}>n, X_{n+1}=y, X_{n}=z\right) \tag{7a}\\
& =p(x, y)+\sum_{n=1}^{\infty} \sum_{z \neq x} P_{x}\left(T_{x}>n+1, X_{n+1}=y, X_{n}=z\right) \tag{7b}\\
& =\sum_{n=0}^{\infty} \sum_{z} P_{x}\left(T_{x}>n+1, X_{n+1}=y, X_{n}=z\right) \tag{7c}\\
& =\sum_{n=0}^{\infty} P_{x}\left(T_{x}>n+1, X_{n+1}=y\right) \tag{7d}
\end{align*}
$$

From the second to the third line, we used similar reasoning as above (but in reverse). In the last step, we used that X_{n} had to be something. But this is just $\mu_{x}(y)$, reindexed. So

$$
\begin{equation*}
\sum_{z} \mu_{x}(z) p(z, y)=\mu_{x}(y) \tag{8}
\end{equation*}
$$

if $y \neq x$.
On the other hand, if $x=y$, then

$$
\begin{align*}
P_{x}\left(T_{x}>n, X_{n+1}=y, X_{n}=z\right) & =P_{x}\left(T_{x}>n, X_{n+1}=x, X_{n}=z\right) \tag{9a}\\
& =P_{x}\left(T_{x}=n+1, X_{n}=z\right) \tag{9b}
\end{align*}
$$

because if $X_{n}=z, X_{n+1}=x$, and $x \neq z$, then we must have $T_{x}=n+1$ (which subsumes $T_{x}>n$). So we have

$$
\begin{align*}
\sum_{z} \mu_{x}(z) p(z, x) & =p(x, x)+\sum_{n=1}^{\infty} \sum_{z \neq x} P_{x}\left(T_{x}=n+1, X_{n}=z\right) \tag{10a}\\
& =p(x, x)+\sum_{n=1}^{\infty} P_{x}\left(T_{x}=n+1\right) \tag{10b}\\
& =\sum_{n=0}^{\infty} P_{x}\left(T_{x}=n+1\right) \tag{10c}
\end{align*}
$$

the last line because $P_{x}\left(T_{x}=1\right)=p(x, x)$. By recurrence, $P_{x}\left(T_{x}<\infty\right)=1$, so the above sums to 1 . But one can check that

$$
\begin{align*}
\mu_{x}(x) & =\sum_{n=0}^{\infty} P_{x}\left(X_{n}=x, T_{x}>n\right) \tag{11a}\\
& =P_{x}\left(X_{0}=x, T_{x}>0\right) \tag{11b}\\
& =1 \tag{11c}
\end{align*}
$$

because $P_{x}\left(X_{n}=x, T_{x}>n\right)=0$ for $n>0$. Thus

$$
\begin{equation*}
\sum_{z} \mu_{x}(z) p(z, y)=\mu_{x}(y) \tag{12}
\end{equation*}
$$

QED

Perron-Frobenius Theorem: see Notes for Lecture 13 for more information.

