Notes for Lecture 21

klin@math.arizona.edu

April 7, 2020 Revised April 9, 2020

Today, we started Chapter 2 (hooray!). I mainly reviewed exponential random variables and their various properties, including:

- 1) If T_1, \dots, T_n are independent and $T_i \sim Exp(\lambda_i)$, then $\min(T_1, \dots, T_n) \sim Exp(\sum_i \lambda_i)$. Moreover, if *I* is the index of the minimum, i.e., $T_I = \min(T_1, \dots, T_n)$, then *I* and $\min(T_1, \dots, T_n)$ are independent.
- 2) If T_1, \dots, T_n are independent and $T_i \sim Exp(\lambda)$ for all *i*, then $\sum_i T_i$ is a $gamma(n, \lambda)$ random variable (see text).

I basically followed the proofs in the text, with the exception of the independence of *I* and min(T_1, \dots, T_n). Instead of the proof in the book, I sketched how for all $i \in \{1, \dots, n\}$ and $0 \le a \le b$, we have

$$P((I=i)\cap(a\leqslant\min(T_1,\cdots,T_n)\leqslant b)) = P(I=i)\cdot P(a\leqslant\min(T_1,\cdots,T_n)\leqslant b).$$
(1)

This is enough to imply that for all events $E \subset \{1, \dots, n\}$ and $F \subset [0, \infty)$, we have $P((I \in E) \cap (\min(T_1, \dots, T_n) \in F)) = P(I \in E) \cdot P(\min(T_1, \dots, T_n) \in F).$

Addendum, April 9, 2020. I mentioned in passing that the exponential distribution is *essentially* the only one with the memoryless property. Here is a partial "proof." (I'm not stating the underlying assumptions.) Suppose *T* is a continuous random variable such that P(T > 0) = 1 and it has the memoryless property, i.e.,

$$P(T > t + s | T > s) = P(T > t)$$
 (2)

for all $s, t \ge 0$. Let

$$G(t) = P(T > t).$$
(3)

Then

$$G(t+s) = P(T > t+s)$$

= $P(T > t+s, T > s)$
= $P(T > t+s|T > s) P(T > s)$
= $P(T > t) P(T > s)$
= $G(t) G(s).$

So

$$G(t+s) - G(t) = G(t)(G(s) - 1)$$
(4)

Dividing both sides by *s* and letting $s \rightarrow 0$ yields

$$G'(t) = G(t) \cdot G'(0).$$
 (5)

Since *G*(*t*) is decreasing (or at lesat non-increasing), $G'(0) \le 0$. Let $\lambda = -G'(0)$ yields $G'(t) = -\lambda G(t)$, so that $G(t) = e^{-\lambda t}$.