Notes for Lecture 21

klin@math.arizona.edu

April 7, 2020
Revised April 9, 2020

Today, we started Chapter 2 (hooray!). I mainly reviewed exponential random variables and their various properties, including:

1) If T_{1}, \cdots, T_{n} are independent and $T_{i} \sim \operatorname{Exp}\left(\lambda_{i}\right)$, then $\min \left(T_{1}, \cdots, T_{n}\right) \sim$ $\operatorname{Exp}\left(\sum_{i} \lambda_{i}\right)$. Moreover, if I is the index of the minimum, i.e,. $T_{I}=$ $\min \left(T_{1}, \cdots, T_{n}\right)$, then I and $\min \left(T_{1}, \cdots, T_{n}\right)$ are independent.
2) If T_{1}, \cdots, T_{n} are independent and $T_{i} \sim \operatorname{Exp}(\lambda)$ for all i, then $\sum_{i} T_{i}$ is a $\operatorname{gamma}(n, \lambda)$ random variable (see text).

I basically followed the proofs in the text, with the exception of the independence of I and $\min \left(T_{1}, \cdots, T_{n}\right)$. Instead of the proof in the book, I sketched how for all $i \in\{1, \cdots, n\}$ and $0 \leqslant a \leqslant b$, we have
$P\left((I=i) \cap\left(a \leqslant \min \left(T_{1}, \cdots, T_{n}\right) \leqslant b\right)\right)=P(I=i) \cdot P\left(a \leqslant \min \left(T_{1}, \cdots, T_{n}\right) \leqslant b\right)$.
This is enough to imply that for all events $E \subset\{1, \cdots, n\}$ and $F \subset[0, \infty)$, we have $P\left((I \in E) \cap\left(\min \left(T_{1}, \cdots, T_{n}\right) \in F\right)\right)=P(I \in E) \cdot P\left(\min \left(T_{1}, \cdots, T_{n}\right) \in F\right)$.

Addendum, April 9, 2020. I mentioned in passing that the exponential distribution is essentially the only one with the memoryless property. Here is a partial "proof." (I'm not stating the underlying assumptions.) Suppose T is a continuous random variable such that $P(T>0)=1$ and it has the memoryless property, i.e.,

$$
\begin{equation*}
P(T>t+s \mid T>s)=P(T>t) \tag{2}
\end{equation*}
$$

for all $s, t \geqslant 0$. Let

$$
\begin{equation*}
G(t)=P(T>t) . \tag{3}
\end{equation*}
$$

Then

$$
\begin{aligned}
G(t+s) & =P(T>t+s) \\
& =P(T>t+s, T>s) \\
& =P(T>t+s \mid T>s) P(T>s) \\
& =P(T>t) P(T>s) \\
& =G(t) G(s) .
\end{aligned}
$$

So

$$
\begin{equation*}
G(t+s)-G(t)=G(t)(G(s)-1) \tag{4}
\end{equation*}
$$

Dividing both sides by s and letting $s \rightarrow 0$ yields

$$
\begin{equation*}
G^{\prime}(t)=G(t) \cdot G^{\prime}(0) . \tag{5}
\end{equation*}
$$

Since $G(t)$ is decreasing (or at lesat non-increasing), $G^{\prime}(0) \leqslant 0$. Let $\lambda=-G^{\prime}(0)$ yields $G^{\prime}(t)=-\lambda G(t)$, so that $G(t)=e^{-\lambda t}$.

