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In today’s lecture, I continued to discuss the Poisson process. Recall the defining properties
of the Poisson process are:

(i) N(0) = 0;

(ii) N(t + s)− N(s)∼ Poisson(λt) for all s, t ¾ 0; and

(iii) for all n and 0 ¶ t0 ¶ · · · tn, the increments N(t1) − N(t0), · · · , N(tn) − N(tn−1) are
independent random variables.

Last time, we introduced two different ways of thinking about the Poisson process:

- Model A: let τ1,τ2, · · · be a sequence of independent Exp(λ) random variables, which we
view as waiting times (or “gaps”) between events. Then Tn = τ1 + · · ·+τn are the times
of actual events, and N(t) =max{n | Tn ¶ t} is a Poisson process.

- Model B: fix n large, and subdivide [0, t] into n bins. Put a ball in the ith bin with
probability pn = λt/n. Do this independently for each bin. Then the total number Nn of
balls is a binomial random variable with distribution Bin(n, pn), and Nn converges to a
Poisson process “in distribution” as n→∞.

The phrase “in distribution” means, roughly speaking, that the probability distribution of Nn

and functions of Nn converge to those of the Poisson process as n →∞. For example, for
nonnegative integers k, P(Nn = k)→ e−λt(λt)k/k! as n→∞.

Note: there is a subtlety in the definition of Model A that is used below, namely that we use
“¶ t” in defining N(t), instead of “< t”. This implies that if τ1 = 7, then N(t) = 0 for all t < 7
but N(7) = 1. It also tells us that for all 0¶ s ¶ t, N(t)− N(s) counts the number of events in
(s, t].

From Model B to Model A. First, as the text pointed out, the Poisson Approximation Theorem
(Theorem 2.5) tells us that P(Nn = k) tends to the Poisson distribution as n →∞. So this
suggests that Model B approximates a Poisson process for large n, and that this approximation
becomes exact as n→∞. These things are true, but I won’t prove them here.1

Now let γ1, · · · denote the gaps between events, i.e., these are the number of empty bins
between filled ones or, if you prefer flipping coins, the lengths of runs of tails. So γi ¾ 0 for each

1If you are curious how this works, let me know and I’ll try to find you a good reference.
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i. The γi are analogous to the waiting timse τi in Model A. As explained in class, however, γi

count time in terms of bins, while τi count time as a real number. To relate them, let δn = t/n
be the bin width. Then γiδn measures time in the correct “units,” i.e., as a real number.

To show that Model B is equivalent to Model A in the limit n→∞, we need to show

(a) the random variables γiδn have the exponential distribution as n→∞, i.e.,

lim
n→∞

P(γiδn > s) = e−λs (1)

for all s > 0.

(b) γ1δn, · · · become independent as n→∞.

Condition (b) is actually false for fixed n: the gaps cannot be independent because for a finite
number of bins, a long gap in one place makes a long gap elsewhere less likely (since there are
only so many bins). To show (b) means to show that this effect goes away as n→∞, which I
won’t do here.

Condition (a) is easier: first, for any integer k ¾ 0,

P(γi ¾ k) = (1− p)k. (2)

(This is just the probability of flipping at least k tails in a row.) Now, for a fixed s > 0, let kn be
the nearest integer to s/δn, so that s ≈ knδn, and keep in mind the approximation improves as
n→∞. Then

P(γiδn ¾ s)≈ P(γiδn ¾ knδn) (3a)

= P(γi ¾ kn) (3b)

= (1− pn)
kn (3c)

where pn = λt/n as before. Observe

(1− pn)
kn ≈

�

1−
λt
n

�s/δn
(4a)

=
�

1−
λt
n

�ns/t
. (4b)

By an application of l’Hôpital’s rule, this→ e−λs as n→∞. So the γiδn approach exponential
random variables as n→∞, as claimed.

Model A has the properties of a Poisson process. The text gives an explanation of Property
(ii) using the gamma distribution (see Lemma 2.6). Here is the alternate inductive proof I gave
in class, with a little cleaning up. For simplicity, let s = 0. The goal is then to show that the
N(t) given by Model A has the property

P(N(t) = n) =
e−λt(λt)n

n!
. (5)
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For the base case n= 0, note that

P(N(t) = 0) = P(τ1 > t) (6a)

= e−λt , (6b)

which is exactly Eq. (5) with n = 0. For the inductive step, assume n> 0 and that Eq. (5) holds
up to n− 1. Then using the continuous law of alternatives to condition on τ1, we get

P(N(t) = n) =

∫ t

0

P(N(t) = n | τ1 = s) fτ1
(s) ds (Law of Alt.) (7a)

=

∫ t

0

P(N(t) = n | τ1 = s) λ e−λs ds (τ1 ∼ Exp(λ)). (7b)

Now observe that
P(N(t) = n | τ1 = s) = P(N(t)− N(s) = n− 1). (8)

In words: if the first event occurred at time s, then the probability of having n events in [0, t]
equals the probability of having n − 1 events in (s, t]. (The half-open interval is important
because we don’t want to count the event at time s again. It is also what’s consistent with the
definition of N(t).) Now by Lemma 2.7, N(t) − N(s) is again Poisson, so by our induction
hypothesis, we have

P(N(t)− N(s) = n− 1) =
e−λ(t−s)(λ(t − s))n−1

(n− 1)!
. (9)

Plugging this into Eq. (7) gives

P(N(t) = n) =

∫ t

0

e−λ(t−s)(λ(t − s))n−1

(n− 1)!
λ e−λs ds (10a)

=
λn

(n− 1)!

∫ t

0

e−λ(t−s)(t − s)n−1 e−λs ds (10b)

=
e−λtλn

(n− 1)!

∫ t

0

(t − s)n−1 ds. (10c)

(From the 1st to 2nd line, we just moved some factors out of the integral. From 2nd to 3rd, we
used eλs · e−λs = 1.) The remaining integral is easy to evaluate, and is just tn/n. Combining it
all gives

P(N(t) = n) =
e−λtλn tn

n!
, (11)

which was what we wanted.

As for Property (iii), this is the content of Lemmas 2.7 and 2.8. Lemma 2.7, in particular,
is the key. My explanation of it in lecture was a bit garbled. I don’t currently have a better
explanation than what’s in the text, so take a look at that and let me know if you have questions!

Here, I’ll just point out one more thing: recall that a sum of independent Poisson random
variables is again Poisson. This is compatible with the independent increments property, as
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illustrated by the following example: let N1 = N(2) − N(1) and N2 = N(4) − N(2), i.e., N1

and N2 count the number of events in (1, 2] and (2, 4], respectively. By Property (ii), they are
Poisson with rates λ1 = λ and λ2 = 2λ. Now, N1 + N2 is just the total numbr of events in (1, 4].
By Property (ii), they are independent, so N1+N2 is again Poisson, with rate λ1+λ1 = 3λ. This
is exactly what one would expect from applying Property (ii) directly to N(4)−N(1). Note that
this reasoning extends to any number of disjoint intervals.

From Properties (i)–(iii) to Model A. While I don’t have anything better to say about why
Model A has the Poisson properties (i)–(iii), it is relatively straightforward to go in the reverse
direction, i.e., derive Model A from Properties (i)–(iii). I record the ideas here.

More precisely, suppose we have a Poisson process N(t), and that all we know about it is
Properties (i)–(iii). Our first task is to try to define the waiting times τ1,τ2, · · · from just N(t).
This can be done as follows: we know N(t) is integer valued, and Property (ii) tells us that
N(t)¾ N(s) if t ¾ s, i.e., N(t) is nondecreasing. So, N(t) can only increas by discrete jumps of
size +1. The jump times Ti can thus be defined as the times at which N(t) has jumps, i.e.,

T1 =min{t | N(t) = 1}
T2 =min{t | N(t) = 2}

...

The waiting times are defined by τn = Tn − Tn−1, with T0 = 0.
We now need to show that the τi are independent Exp(λ) random variables. To do this,

note that for any t ¾ 0,

P(τ1 > t) = P(N(t) = 0) (12a)

= e−λt . (12b)

(We used these equalitiess just a little earlier, but in a different way.) This shows that τ1 ∼
Exp(λ).

Next, to show that τ2 ∼ Exp(λ) and that it is independent of τ1, let s, t ¾ 0. Then

P(τ1 > s,τ2 > t) =

∫ ∞

0

P
�

τ1 > s,τ2 > t
�

� τ1 = u
�

fτ1
(u) du (Law of Alt.) (13a)

=

∫ ∞

s

P
�

τ2 > t
�

� τ1 = u
�

fτ1
(u) du (13b)

=

∫ ∞

s

P
�

τ2 > t
�

� τ1 = u
�

λe−λu du. (13c)

Observe
P
�

τ2 > t
�

� τ1 = u
�

= P
�

N(u+ t)− N(u) = 0
�

� N(u) = 1
�

. (14)

(Draw a time line!) But by Property (iii), N(t)− N(u) and N(u) are independent, so

P
�

N(u+ t)− N(u) = 0
�

� N(u) = 1
�

= P(N(u+ t)− N(u) = 0). (15)
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By Property (ii), we have
P(N(u+ t)− N(u) = 0) = e−λt . (16)

Thus

P(τ1 > s,τ2 > t) =

∫ ∞

s

e−λt λe−λu du (17a)

= λe−λt

∫ ∞

s

e−λu du (17b)

= e−λt e−λs (17c)

and
P(τ1 ¶ s,τ2 ¶ t) = (1− e−λt)(1− e−λs). (18)

The above is a bivariate analog of the CDF. Taking partial derivatives ∂ 2

∂ s∂ t tells us the joint PDF
of τ1 and τ2 is

λ2e−λt e−λs, (19)

i.e., τ1 and τ2 are independent.
The argument to show show τn is exponential for n > 2, and independent of τm for all

m< n, is a little more complicated, but can be constructed along similar lines.
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