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Today, I covered

1) Theorems 2.15, which essentially states that conditioned on N(t) = n, the set of arrival
times {T1, · · · , Tn} have the same distribution as {U1, · · · , Un}where the Ui are IID uniform
random variables on [0, t].

2) Theorem 2.16, which states that conditioned on N(t) = n, the number of events occurring
in an interval I ⊂ [0, t] is binomial, with p = length(I)/t.

3) Discussed the proof of Theorem 2.15. Some notes:

- Theorem 2.16 is an easy consequence of 2.15.

- Theorem 2.14, on superpositions, is easy to prove. It just follows from the fact that
a sum of independent Poisson random variables is another Poisson random variable.

- I had planned to talk the proof of Theorem 2.11, on thinning Poisson processes, but
ran out of time. See the explanation in the text instead.

For the proof of Theorem 2.15, I largely followed the text, but expanded some details. Here it
is. For concreteness, let n= 2. Our goal is to show that (T1, T2) has density

f (t1, t2) =

¨

2!/t2, 0¶ t1 ¶ t2 ¶ t

0, otherwise
(1)

Note that this is the density you would expect for two random variables V1 < V2, obtained
from two independent uniform random variables (U1, U2) by sorting, i.e., V1 = U1 ∧ U2 and
V2 = U1 ∨ U2.

The first step is to recall that for two continuous random variables X and Y , we have

P((X , Y ) ∈ E)≈ fX Y (x0, y0) · area(E) (2)

if their joint PDF fX Y is sufficiently smooth, the set E is sufficiently small (in diameter, say), and
(x0, y0) is any point in E. Moreover, the quality of the approximation improves as the diameter
of E goes to 0. This is just because that if the joint PDF is smooth, then on a small set it will be
very close to being constant.
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Next, let 0< t1 < t2 < t, and fix a small δ > 0. Observe

P(T1 ∈ [t1, t1 +δ], T2 ∈ [t2, t2 +δ] | N(t) = 2) (3a)

=
P(T1 ∈ [t1, t1 +δ], T2 ∈ [t2, t2 +δ], N(t) = 2)

P(N(t) = 2)
(3b)

by definition of conditional probability, which can be rewritten as

=
P(T1 ∈ [t1, t1 +δ], T2 ∈ [t2, t2 +δ], T3 > t)

P(N(t) = 2)
(3c)

=
P(τ1 ∈ [t1, t1 +δ],τ1 +τ2 ∈ [t2, t2 +δ],τ3 > t − t2)

P(N(t) = 2)
. (3d)

where we have introduced the waiting times τ1 = T1, τ2 = T2 − T1, and τ3 = T3 − T2. Doing
this is useful because as we know, the waiting times are indepenedent exponential random
variables.

We now apply Eq. (1), so that

P(τ1 ∈ [t1, t1 +δ],τ1 +τ2 ∈ [t2, t2 +δ],τ3 > t − t2)
P(N(t) = 2)

(4a)

=
P((τ1,τ2) ∈ A,τ3 > t − t2)

P(N(t) = 2)
(4b)

≈
λe−λt1 ·λe−λ(t2−t1) · e−λ(t−t2) ·δ2

e−λt(λt)2/2!
. (4c)

In the above, the set A is a parallelogram with base and height δ (and thus area δ2). This is a
geometric consequence of rewriting the probability in terms of (τ1,τ2) instead of (T1, T2). To
see this, observe that the event (τ1,τ1+τ2) ∈ [t1, t1+δ]× [t2, t2+δ] corresponds to a square
in the τ1-τ2 plane. This event is equivalent to the event (τ1,τ2) ∈ A for some subset A of the
plane. To see that A has the geometry claimed above, observe that

�

1 0
−1 1

�

·
�

τ1

τ1 +τ2

�

=
�

τ1

τ2

�

. (5)

Thus A is the image of the square [t1, t1 + δ] × [t2, t2 + δ] under the linear transformation
defined by the 2× 2 matrix above. Since the matrix has determinant 1, the area of the image is
the same as that of the square, namely δ2. Finally, comparing Eqs. (4c) and (1), we see that
the conditional PDF of (T1, T2) is Eq. (4c) without the δ2 factor.

The rest is algebra: Eq. (4c), after simplification, is just 2/t2, which is what we wanted.
This argument generalizes to show that conditioned on N(t) = n, the arrival times (T1, · · · , Tn)
have joint pdf

f (t1, · · · , tn) =
§

n!/tn, 0< t1 < · · ·< tn < 1
0, otherwise (6)
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