Notes for Lecture 27 and 28

klin@math.arizona.edu

April 28 and 30, 2020

These two lectures are a brief introduction to continuous time Markov chains (CTMCs). Every I covered is in Sections 4.1 and 4.2 of the text. Without going into details of proofs etc., I covered

- Markov property for CTMCs;
- transition probabilities;
- Chapman-Kolmogorov equations;
- transition rates;
- Kolmogorov's forward and backward equations; and
- stationary distrbutions.

All these are explained in the text. I'll just mention one deviation: I defined

$$
\begin{equation*}
q(i, j)=\frac{d}{d t} p_{t}(i, j) \tag{1}
\end{equation*}
$$

even when $i=j$. This is not what the book does, and is not quite standard, but it's convenient.
For completeness I list my main examples:

1) Poisson process $N(t)$.
2) A machine has two states, UP or DOWN. It breaks down at a rate of once a day. When this happens, a repair person is called, and with an exponential time of rate 9 , they will fix the machine. On average, what fraction of time is the machine up and running?
3) My parents pay unannounced viists once a month, and each time stay an exponential amount of time with mean $1 / 2$ month. My sister does the same, but visiting 3 times a month and stays on average $1 / 4$ a month. The two processes are independent. What fraction of the time are they both visiting me?
