
Computing the Cohomology Ring

and Ext-Algebra of Group Algebras

by

Robert Michael Pawloski

A Dissertation Submitted to the Faculty of the

Department of Mathematics

In Partial Fulfillment of the Requirements
For the Degree of

Doctor of Philosophy

In the Graduate College

The University of Arizona

2 0 0 6

2

THE UNIVERSITY OF ARIZONA
GRADUATE COLLEGE

As members of the Dissertation Committee, we certify that we have read the disser-
tation

prepared by Robert Pawloski

entitled Computing the Cohomology Ring and Ext-Algebra of Group Algebras

and recommend that it be accepted as fulfilling the dissertation requirement for the

Degree of Doctor of Philosophy

Date: April 14, 2006
Klaus Lux

Date: April 14, 2006
Doug Ulmer

Date: April 14, 2006
Kirti Joshi

Date: April 14, 2006
Larry Grove

Date: April 14, 2006
William McCallum

Final approval and acceptance of this dissertation is contingent upon the candidate’s
submission of the final copies of the dissertation to the Graduate College.

I hereby certify that I have read this dissertation prepared under my direction and
recommend that it be accepted as fulfilling the dissertation requirement.

Date: April 14, 2006
Dissertation Director: Klaus Lux

3

Statement by Author

This dissertation has been submitted in partial fulfillment of requirements for an
advanced degree at The University of Arizona and is deposited in the University
Library to be made available to borrowers under rules of the Library.

Brief quotations from this dissertation are allowable without special permission,
provided that accurate acknowledgment of source is made. Requests for permission
for extended quotation from or reproduction of this manuscript in whole or in part
may be granted by the head of the major department or the Dean of the Graduate
College when in his or her judgment the proposed use of the material is in the interests
of scholarship. In all other instances, however, permission must be obtained from the
author.

Signed: Robert Michael Pawloski

4

Acknowledgments

I owe much thanks to Klaus Lux for struggling through the early incomprehensible
versions of my work and helping me turn it into a dissertation. I also would like to
thank Klaus for all of the great ideas and mathematical insight that he gave me over
many cups of coffee.

I would like to also thank all of my family members for their encouragement while
completing my PhD at the University of Arizona. I would like to thank my son Robby
for always having a smile and hug for me and helping me always put some perspective
into what I was doing.

Finally, I thank my wife Kristen for all of her support over my five years at the
University of Arizona. I know that it was not always easy, but she was always there
for me. Thank you.

5

Table of Contents

List of Figures . 8

List of Tables . 9

Abstract . 10

Introduction . 11

Chapter 1. Background . 18
1.1. Rings, Algebras and Modules . 18
1.2. Radicals and Socles . 28
1.3. Noetherian and Artinian Rings . 31
1.4. Projective Covers . 37
1.5. Idempotents . 39
1.6. Basic Algebras . 46

1.6.1. Category Theory . 46
1.6.2. Morita Theory . 49

1.7. Quivers and Path Algebras . 51
1.7.1. Ideals in Path Algebras . 53

Chapter 2. Cohomology and Ext . 55
2.1. Homological Algebra . 56
2.2. Projective Resolutions . 57
2.3. The Ext-Algebra and Cohomology Ring 60
2.4. Computing H∗ (G, k) and E (kG) . 69

2.4.1. The Quiver of B and E (B) 75
2.5. Finite Generation of H∗ (G, k) and E (kG) 77

Chapter 3. Noncommutative Gröbner Bases 79
3.1. Noncommutative Gröbner Bases . 79

3.1.1. Computational Uses of Gröbner Bases 86
3.1.2. Alternative Gröbner Basis Algorithm 87

3.2. Anick-Green and Minimal Resolutions 90
3.2.1. Overlap sets . 91
3.2.2. The Start of the Resolution 93
3.2.3. The Anick-Green resolution 96
3.2.4. The Resolution of a Vertex Simple Module 97
3.2.5. Resolution for Finitely Presented modules 101

Table of Contents— Continued

6

3.2.6. Minimal Projective Resolutions 106

Chapter 4. Implementations and Examples in GAP 116
4.1. Cohomology and Ext . 116

Chapter 5. Results . 131
5.1. Data Summary . 131
5.2. Data Description . 132
5.3. Alternating Groups . 134

5.3.1. A4 . 134
5.3.2. A5 . 135
5.3.3. A6 . 136
5.3.4. A7 . 137
5.3.5. A8 . 139
5.3.6. A9 . 141
5.3.7. A10 . 142

5.4. Symmetric Groups . 143
5.4.1. S4 . 143
5.4.2. S5 . 144
5.4.3. S6 . 145
5.4.4. S7 . 147
5.4.5. S8 . 148
5.4.6. S9 . 149
5.4.7. S10 . 151

5.5. Sporadic Simple Groups . 152
5.5.1. M11 . 152
5.5.2. M12 . 154
5.5.3. J1 . 156
5.5.4. M22 . 159
5.5.5. J2 . 160
5.5.6. M23 . 162
5.5.7. HS . 164
5.5.8. J3 . 166
5.5.9. McL . 168

5.6. Classical Groups . 169
5.6.1. L2 (7) . 169
5.6.2. L3 (3) . 170
5.6.3. L2 (8) . 171
5.6.4. U3 (3) . 172
5.6.5. U3 (4) . 173

Table of Contents— Continued

7

5.6.6. U3 (5) . 175
5.6.7. U4 (2) . 176

5.7. Timing Comparisons of Projective Resolutions 178

Appendix A. Timings . 183
A.1. Gröbner Basis Computations . 183
A.2. Projective Resolutions . 188
A.3. Cohomology Ring . 194
A.4. Ext-Algebra . 198

Appendix B. Data Structures . 202
B.1. Basic Algebras . 202
B.2. Gröbner Basis Information . 205
B.3. Anick Computation Record . 207
B.4. Cohomology and Ext Records . 209

Index . 214

References . 218

8

List of Figures

Figure 2.1. Standard Lifting of a Generator 71
Figure 2.2. Quiver of Ext-algebra of F2S4 77

Figure 3.1. Ext-Quiver of Basic Algebra of F2S4 81

9

List of Tables

Table 5.1. Some Known Cohomology Rings 132
Table 5.2. Some Known Ext-Algebras . 133
Table 5.3. Minimal Resolution Comparisons: Alternating Groups 179
Table 5.4. Minimal Resolution Comparisons: Symmetric Groups 180
Table 5.5. Minimal Resolution Comparisons: Other Groups 181
Table 5.6. Minimal Resolution Comparisons: p-Groups 182

Table A.1. Gröbner Basis Timings: Alternating Groups 184
Table A.2. Gröbner Basis Timings: Symmetric Groups 185
Table A.3. Gröbner Basis Timings: Sporadic Groups 186
Table A.4. Gröbner Basis Timings: Classical Groups 187
Table A.5. Minimal Resolution Timings: Alternating Groups 189
Table A.6. Minimal Resolution Timings: Symmetric Groups 190
Table A.7. Minimal Resolution Timings: Sporadic Groups 191
Table A.8. Minimal Resolution Timings: Sporadic Groups Cont. 192
Table A.9. Minimal Resolution Timings: Classical Groups 193
Table A.10. Cohomology Ring Timings: Alternating Groups 194
Table A.11. Cohomology Ring Timings: Symmetric Groups 195
Table A.12. Cohomology Ring Timings: Sporadic Groups 196
Table A.13. Cohomology Ring Timings: Classical Groups 197
Table A.14. Ext Algebra Timings: Alternating Groups 198
Table A.15. Ext Algebra Timings: Symmetric Groups 199
Table A.16. Ext Algebra Timings: Sporadic Groups 200
Table A.17. Ext Algebra Timings: Classical Groups 201

10

Abstract

This dissertation describes an algorithm and its implementation in the computer

algebra system GAP for constructing the cohomology ring and Ext-algebra for certain

group algebras kG. We compute in the Morita equivalent basic algebra B of kG

and obtain the cohomology ring and Ext-algebra for the group algebra kG up to

isomorphism. As this work is from a computational point of view, we consider the

cohomology ring and Ext-algebra via projective resolutions.

There are two main methods for computing projective resolutions. One method

uses linear algebra and the other method uses noncommutative Gröbner basis theory.

Both methods are implemented in GAP and results in terms of timings are given. To

use the noncommutative Gröbner basis theory, we have implemented and designed

an alternative algorithm to the Buchberger algorithm when given a finite dimensional

algebra in terms of a basis consisting of monomials in the generators of the algebra

and action of generators on the basis.

The group algebras we are mainly concerned with here are for simple groups in

characteristic dividing the order of the group. We have computed the Ext-algebra

and cohomology ring for a variety of simple groups to a given degree and have thus

added many more examples to the few that have thus far been computed.

11

Introduction

To study a finite group, one could study the representations of that group. A repre-

sentation ρ of a finite group G over a field k is a homomorphism ρ : G→ GL (V) of

G into the group GL (V) of invertible k-endomorphisms of a finite dimensional vector

space V over k. Another way of studying a finite group is to study the structure of a

related ring. We do this by constructing a finite dimensional vector space with G as a

basis and defining a suitable multiplication. We call this ring kG the group algebra.

Any representation ρ : G → GL (V) of a finite group G over a field k (and likewise

any matrix representation) extends by k-linearity naturally to a ring homomorphism

ρ : kG → End (V) which will be denoted by the same symbol and which is called a

representation of the group ring. Also V becomes a kG-module with v · a := vρ (a)

for a ∈ kG and v ∈ V . Conversely, if V is any kG-module which has finite dimen-

sion as a k-vector space, then one obtains a representation ρ : kG → End(V) by

defining vρ (a) := v · a and one obtains a representation of G by restricting ρ to G.

The kG-module V is often called the representation module of the representation

ρ : G → GL(V). Obviously equivalent representations have representation modules

which are isomorphic as kG-modules and vice versa. Thus to study a group one can

study the representations of the group or one can study the kG-modules. We will

take the point of view in this dissertation of studying the kG-modules.

Thus we may think of finitely generated kG-modules as being the same thing as

representations of G as matrices with entries in k. Ideally, we would like to classify

all kG-modules for a group G and a field k. However, the field k plays an important

role. According to Maschke’s theorem if the characteristic p of the field k does not

divide the order of G, then we know that all kG-modules are the direct sum of simple

modules. When p does divide the order of G, this is no longer true. In this situation,

a new class of interesting modules arises which are no longer the direct sum of simple

12

modules. However, any finitely generated kG-module still has a composition series.

The reconstruction of a kG-module in the case where p divides the order of the

group G from simple composition factors is far more complicated. This is a highly

nontrivial task which we call the extension problem. A useful approach to attacking

the extension problem is applying methods from homological algebra.

As a starting point in homological algebra we consider a kG-moduleM with simple

submodule S1 and quotient module S2 = M/S1. Then M can be expressed as the

following exact sequence:

0 −→ S1 −→M −→ S2 −→ 0.

All such extensions modulo a suitable equivalence relation form a k-vector space

Ext1
kG(S2, S1). If we consider longer exact sequences starting in S1 and ending in S2

of a fixed length n ≥ 2, we may similarly define higher Extn
kG (S2, S1). These higher

Ext-vector spaces are needed for reconstructing modules with composition series of

length n. Therefore, we are interested in determining Extn
kG(Si, Sj) for all simple

kG-modules. In order to get a grip on all of these vector spaces Extn
kG (Si, Sj), we

note that for sequences in Extn
kG (Si, Sj) and sequences in Extm

kG (Sj, Sk) we can splice

these sequences together to get an element of Extm+n
kG (Si, Sk). In this way, we can

consider ui,j,n Extn
kG (Si, Sj) which is not only a k-vector space but also a graded

k-algebra. This algebra is known as the Ext-algebra. Although we have an infinite

dimensional vector space, Evens [Eve61] has shown that the Ext-algebra is finitely

generated as a k-algebra. Therefore, one goal is to describe this noncommutative

infinite dimensional algebra in terms of a finite set of generators and the relations

satisfied among the generators.

The definition of an Ext-algebra in terms of equivalence classes of long exact se-

quences is a useful theoretical tool. However, for computational purposes a more

practical way of describing the Ext-algebra is by using minimal projective resolutions

[CGS97]. The literature covers two generally different ways of carrying out this com-

13

putation; for example see [CTVEZ03] and [Gre97]. A minimal projective resolution

for a simple module M may be defined in an iterative way: We take an epimorphism

ε from a projective module P (M) of minimal dimension mapping onto M . We call

the kernel of this map Ω1 (M). We then compute an epimorphism from P (Ω1 (M))

onto Ω1 (M), take the kernel of this map and continue. We can summarize this in

the following sequence:

. . . // P (Ω2(M))
∂2 //

ω2 &&MMMMMMMMMM
P (Ω1(M))

∂1 //

ω1 &&MMMMMMMMMM
P (M) ε //M

Ω2(M)

ι2

88qqqqqqqqqq
Ω1(M)

ι1

::uuuuuuuuu

As mentioned above, there are two different ways to compute a minimal projective

resolution. For the first approach to this problem we consider the exact sequence as a

sequence of linear maps between finite dimensional vector spaces and use basic ideas

from linear algebra to compute the resolution. The second approach is referred to

as the Anick-Green resolution [Gre99]. The idea is to represent our homomorphisms

in a much more compact way than as large matrices with entries in k, i.e. linear

maps. This is accomplished via noncommutative Gröbner basis theory. The idea is

to work with maps between projective modules as lists of generator images. I have

implemented both of these techniques in the computer algebra system GAP [GAP05].

All finite simple groups have been classified and we would like to better understand

them through various methods such as computing Ext-algebras. We first reduce the

amount of work we have to do by studying an equivalent algebra B, called a basic

algebra, which has much smaller dimension as a k-vector space. The fact that allows

us to do this is that a group algebra kG and its equivalent basic algebra B have

isomorphic Ext-algebras.

We now have access to a database of basic algebras for some large groups and the

ability to compute more [Hof04]. We are supplied with a faithful representation of

14

the basic algebra in terms of matrices. The data that is given is already fit for the

linear algebra techniques of computing the Ext-algebra. However, to use the Anick-

Green technique we need a presentation of the algebra in terms of generators and

relations where the generators for the relations ideal are given as a Gröbner basis. We

have implemented an algorithm in GAP that gives a Gröbner basis presentation for

basic algebras. It is an alternative to the noncommutative version of the Buchberger

algorithm. This has allowed us to give an efficient Gröbner basis presentation for the

basic algebra of large simple groups such as the Higman Sims group in characteristic

2.

Historically, the algorithms of noncommutative Gröbner bases and computation

of projective resolutions have been implemented by Green and Feustel in a C-program

called GRB [FG91]. Unfortunately, this program is restricted to the base field Fp and

does not work for larger fields Fpn . We naturally have to consider extensions of Fp to

study even small groups such as the alternating group A5 in characteristic 2. We have

implemented this algorithm over arbitrary finite fields in GAP. Coming back to the

linear algebra approach, J. Carlson [CTVEZ03] has implemented this technique in the

computer algebra system MAGMA [MAG04]. His work focuses mainly on p-groups

in characteristic p. In that setting, all group algebras are already basic and the Ext-

algebra is the same as the cohomology ring. Carlson has computed the cohomology

ring of 2-groups up to order 128. In the case of p-groups there is only the trivial

simple module and thus in some ways is an easier problem. We thus aim to study

examples of arbitrary larger simple groups. We have completed the implementation

for computing the cohomology ring and Ext-algebra of a group algebra in GAP. We

present the Ext-algebra and cohomology ring as the quotient of a path algebra.

One important question in computing an Ext-algebra is when have we found all of

the generators and sufficiently many relations. However, this is an extremely difficult

question. There are two types of results that give specific criteria that guarantee a

sufficient set of generators and relations have been found. Benson and Carlson [BC87]

15

give such a criterion which can be applied to a special situation. The other type of

result exploits the structure of algebras of a special type such as algebras of dihedral

type. This case includes groups with dihedral Sylow subgroups (see [Gen01, GO02,

Gen02, GK03, GK04]). The theoretical base for this problem needs to be expanded.

In general, not much is known about Ext-algebras. Benson and Carlson have

made Ext-algebra computations using diagrammatic methods [BC87]. In that paper

they computed Ext∗kG (S, S) for all simple modules of F2M11, F3A6, F2L3 (3), F2A7,

F2S4, and F2D8. Carlson has also calculated H∗ (G,F2) = Ext∗F2G (F2,F2) for 2-

groups up to order 128 in the computer algebra system MAGMA [MAG04]. With the

implementations of our programs in GAP, we shall be able to build a large library of

Ext-algebras for more groups and look for new results.

In the first chapter we give the basic results from ring, module, and algebra theory.

The first step is to study the group algebra kG. However as we would like to study

some rather large groups such as the sporadic simple Higman Sims group which

has size 44, 352, 000 we would like to study a smaller object which shares the same

properties as our original object. Thus we will use the Morita equivalent basic algebra

B which is categorically equivalent to our original algebra kG. We will discuss the

basics of Morita theory in section 1.6.2. The reduction of the size of the algebra can

be quite significant. For example, the basic algebra of kG, where G is the sporadic

simple group Higman Sims, for k a field of characteristic 2, has dimension 2, 462 over

k. This is now an algebra that can efficiently be worked with on a computer.

The second step is to construct the projective resolution for all of the simple kG-

modules. The projective resolutions of the simple kG-modules are the same as the

projective resolutions of the simple B-modules and so we will work with the basic

algebra B. The problem that has to be solved is: given a map ∂n : Pn → Pn−1 of

projective modules, construct a map ∂n+1 : Pn+1 → Pn which is the projective cover

of the kernel of the map ∂n. In practice, the way we represent ∂n on the computer

has an important effect on performance. Thus we will investigate and compare the

16

two different approaches to this problem by implementing these procedures in GAP.

The linear algebra approach is to represent ∂n by its matrix as a map of k-vector

spaces. Constructing a basis for the kernel of ∂n then involves taking the null space

of the matrix. The only data needed about the basic algebra are the matrices for

the action of the generators in the regular representation. Using these matrices, we

obtain vectors spanning the radical of the kernel of the map ∂n, and then use linear

algebra and some theory about finite dimensional algebras to find a basis for the

complement of the radical. Then Pn+1 has one projective summand for each basis

vector and we can take ∂n+1 to map the generator of the ith summand to the ith basis

vector. We discuss the theory and implementation of this approach in chapter 2 and

the implementation in chapter 4.

As noted, we are interested in studying groups that can be extremely large. There-

fore the linear algebra approach has the limitation of memory storage due to the

storage of rather large matrices. However, this approach is efficient in speed as linear

algebra over finite fields can be done rather quickly in GAP with standard commands.

Thus we would like to have a method that has a more efficient storage method. That

is we would like to be able to represent our homomorphisms in a much more compact

way than as a large matrix with entries in k, i.e. linear maps. The idea is to use

noncommutative Gröbner basis theory and to work with maps between projective

modules as lists of generator images. And as we have a Gröbner basis theory we will

have a unique normal form that we can work with. Using noncommutative Gröbner

bases we can manipulate modules and maps sorted as finite presentations and lists of

generator images respectively, although with some redundancy in the presentations.

The theory is built upon the theory of noncommutative Gröbner bases that arise

from quotients of path algebras. We will outline the theory of Gröbner bases and

the corresponding method and implementation of computing projective resolutions

in chapter 3.

Once we have computed the minimal projective resolutions, we wish to compute

17

the cohomology ring and the Ext-algebra for a group algebra kG. The last algorithm

we implement in this thesis is a procedure for computing the Ext-algebra and coho-

mology ring of a group algebra up to a given degree. The most important feature

of our program will be to have an effective way of lifting homomorphisms and com-

puting chain maps. We describe the theory of Ext-algebras, cohomology rings, and

how to compute them in chapter 2. We describe the implementation in chapter 4.

Ultimately, we present our algebra abstractly in terms of generators and relations,

where the relations ideal I is given as a Gröbner basis G.

We end the dissertation with some of the computational results that we were able

to obtain using our implementations in GAP. We give these in chapter 5. We end

chapter 5 with some concluding remarks about the two different implementations we

have made in GAP for projective resolutions and give a sample of timing comparisons

for various groups for the linear algebra approach in GAP, the Gröbner basis approach

in GAP, and the program GRB.

18

Chapter 1

Background

In this chapter we first present a background of basic terminology and results from

ring, algebra, and module theory. We then go on to provide the necessary results that

are needed for our algorithms and implementation in GAP. For a background on the

basics of rings, algebras, and modules good references can be found in Grove [Gro04]

and Dummitt and Foote [DF91]. For more advanced topics we refer the reader to

Curtis and Reiner [CR90], Auslander [ARS95], Benson [Ben98a, Ben98b], and Carlson

[Car96]. Most of the results in this chapter are well-known. We will, however, include

parts of the proof or the whole proof where we have found appropriate, for example

when we have not found a thorough or good proof in the literature or when we want

to emphasize a point.

1.1 Rings, Algebras and Modules

Definition 1.1.1. A ring A with identity 1A is said to be an algebra over a commu-

tative ring R, or an R-algebra if there exists a homomorphism ψ : R→ Z(A) from R

into the center Z(A) of A, such that ψ(1R) = 1A.

One of the main goals of this thesis is from a representation theorist’s point of

view and thus we will be interested in studying the group algebra of a finite group.

Throughout the dissertation we assume that G is a finite group and k is a field of

positive characteristic p unless otherwise noted.

Definition 1.1.2. If G is a group, k a field, then the group algebra kG is the set

of all formal finite sums {∑
x∈G

αxx : αx ∈ k

}
,

19

i.e. a vector space with a basis of all group elements with addition defined as(∑
x∈G

αxx

)
+

(∑
x∈G

βxx

)
=
∑
x∈G

(αx + bx)x.

We give kG a ring structure by defining multiplication as(∑
x∈G

αxx

)(∑
y∈G

βyy

)
=
∑

x,y∈G

αxβyxy.

This group ring kG is a k-algebra by virtue of the embedding k → kG, given by

α · 1 → α · 1G, α ∈ k, where 1G is the identity in G.

When studying algebras as in many objects in mathematics, we are interested in

the corresponding sub-objects. Thus we define:

Definition 1.1.3. Let A be an algebra with a subring B. If B is also a k-vector

subspace of A, we call B a subalgebra of A.

As we study ideals in rings, we also study ideals in algebras.

Definition 1.1.4. Let A be a k-algebra. A right ideal I in the algebra A is a

subalgebra of A which is also a right ideal in the ring A. Left ideals are defined

similarly. If I is both a right and left ideal in A, then we call it a two-sided ideal.

A main focus in this dissertation is algorithms for modules. To study an algebra

A, we will be looking at finitely generated A-modules.

Definition 1.1.5. Let A be an algebra over k. We say that M is a right A-module

(resp. a left module) if it is a k-vector space with a right action (resp. left action) by

A satisfying:

1. m · (a1a2) = (m · a1) · a2,

2. m · (a1 + a2) = m · a1 +m · a2,

20

3. (m1 +m2) · a = m1 · a+m2 · a,

4. m · (1A) = m,

5. λ (m · a) = (λm) · a, for all m,m1,m2 ∈M and a, a1, a2 ∈ A.

If M is a right A-module and a left B-module for two algebras A and B such

that b · (m · a) = (b ·m) · a for all b ∈ B, a ∈ A, and m ∈ M , the we call M a B-A

bimodule.

Throughout we will assume that all of our modules are finitely generated.

One example of a module that occurs quite often in representation theory is the

following:

Definition 1.1.6. The right regular A-module of A is given as follows: We allow

A to act on itself as a right module by right multiplication and denote it by AA. We

can similarly define a left regular module by multiplication on the left.

Definition 1.1.7. A representation ρ of a group G over a field k is a homomor-

phism ρ : G→ GL (V) of G into the group GL (V) of invertible k-endomorphisms of

a finite n-dimensional vector space V over k. We call n the degree of the repre-

sentation.

Example 1.1.1. Let A be a group algebra. The right regular module AA is a repre-

sentation. It is called the right regular representation.

Example 1.1.2. Let G be a finite group of order 3, G = C3 = 〈a : a3 = 1〉. Let k be

any field. The elements of kG have the form

λ1 · 1 + λ2 · a+ λ3 · a2 (λi ∈ k)

21

We see that

(
λ1 · 1G + λ2 · a+ λ3 · a2

)
· 1 = λ1 · 1 + λ2 · a+ λ3 · a2,(

λ1 · 1 + λ2 · a+ λ3 · a2
)
· a = λ3 · 1 + λ1 · a+ λ2 · a2,(

λ1 · 1 + λ2 · a+ λ3 · a2
)
· a2 = λ2 · 1 + λ3 · a+ λ1 · a2.

By taking matrices relative to the basis 1, a, and a2 of kG, we obtain the right regular

representation of G:

1 →

1 0 0
0 1 0
0 0 1

 , a→
0 1 0

0 0 1
1 0 0

 , a2 →

0 0 1
1 0 0
0 1 0

Note that the matrices for the regular representation are n × n where n is the

order of the group G.

Definition 1.1.8. Two representations ρ, σ : G→ GL(V) are said to be equivalent

if there is an invertible homomorphism ψ such that for all g ∈ G we have ρ (g) =

ψ · σ · ψ−1 (g).

As we are most interested in group algebras, we will always have a trivial repre-

sentation.

Definition 1.1.9. The representation ρ : G → GL(V) over a 1-dimensional vector

space V defined by gρ = 1 for all g ∈ G is called the trivial representation. The

trivial kG-module is the one dimensional vector space V with vg = v for all v ∈ V

and g ∈ G.

Definition 1.1.10. Let M be an A-module and N a k-vector subspace of M . Then

N is called an A-submodule of M if n · a ∈ N for all a ∈ A and n ∈ N .

Let I be a right ideal in the finite dimensional algebra A. Then I is also a right

A-module. In fact, the right ideals of A are the submodules of AA.

22

Example 1.1.3. Continuing example 1.1.2 from above, we see that if we let w =

1 + a+ a2, then W = Spank (w) is a submodule of the right regular module kGkG.

We give a special name to modules that have only trivial submodules. We will

see later that these are building blocks of all finitely generated modules over a finite

dimensional algebra.

Definition 1.1.11. A simple A-module is a nonzero A-module S whose only sub-

modules are 0 and S. Sometimes a simple module is also referred to as irreducible.

A concrete way of considering whether or not a kG-module M is simple is to

consider the corresponding matrices of the representation. Suppose that the repre-

sentation given is of degree n. We view M as a submodule of kn. Suppose that

M is not a simple module, i.e. it is reducible. So there is a kG-submodule N with

0 < dimN < dimM . Take a basis B1 of N and extend it to a basis B of M . Then

for all g in G, the matrix [g]B has the form[
Ag 0
Bg Cg

]
(1.1)

for some matrices Ag, Bg, and Cg where Ag is m×m (m = dimN).

A representation of degree n is reducible if and only if it is equivalent to a repre-

sentation of the form (1.1), where Ag is m ×m and 0 < m < n. Note that in (1.1),

the homomorphisms ρ : g → Ag and ψ : g → Cg are representations of G. Thus from

the above we know that a representation is irreducible if and only if it cannot be put

into this form.

When studying modules, we also wish to study the maps between them. We will

most often be interested in A-module homomorphisms between modules. Recall that

the A-modules M and N are k-vector spaces, so we can consider the k-linear maps

between M and N . We are most interested in the k-linear maps which commute with

the action of A on M and N . These maps are the A-homomorphisms.

23

Definition 1.1.12. Let M and N be A-modules. Then a k-linear map ϕ : M → N

is an A-homomorphism if ϕ (m · a) = ϕ (m) · a for all m ∈ M and a ∈ A. We

use HomA (M,N) to denote the k-vector space of A-homomorphisms from M to N

and EndA (M) to denote HomA(M,M). If ϕ is a bijection then it is called an A-

isomorphism.

One of the easiest theorems in representation theory that is often very useful

is known as Schur’s Lemma. We will use it later to help determine possible maps

between simple modules.

Lemma 1.1. (Schur’s Lemma) If M is a simple A-module then EndA (M) is a divi-

sion ring . If N is another simple A-module, then either M and N are isomorphic

or else HomA (M,N) = 0.

Proof. A straightforward proof is found in Grove [Gro04, page 173].

One important sequence of homomorphisms that is important to us in our con-

structions is the following.

Definition 1.1.13. Let M1, ...,Mn, be A-modules with homomorphisms fi : Mi →

Mi+1 for i = 1, ..., n− 1. If Im(fi) = Ker fi+1 then we call the sequence

M1
f1−→M2

f2−→ · · · fn−1−→Mn

exact at Mi+1. If it is exact at M2, ...,Mn−1 then we say that the sequence is an

exact sequence. If the sequence

0 −→M1
f1−→M2

f2−→M3 −→ 0

is an exact sequence we call it a short exact sequence.

In our later construction of the Anick-Green resolution, we are interested in exact

sequences that split. By this we mean:

24

Definition 1.1.14. A short exact sequence

0 →M1
f1−→M2

f2−→M3 → 0 (1.2)

is called split if there is an A-module homomorphism g : M3 → M2 such that f2 ◦ g

is the identity map on M3.

A further interpretation of the definition of split exact is that in (1.2) above we

would have that M2
∼=A M1 ⊕M3.

Another important concept in module theory is the notion of a largest submodule.

Definition 1.1.15. By a maximal submodule of an A-module M we mean a

submodule N ⊂M such that there are no submodules L with N ⊂ L ⊂M .

Note: We use the notation ⊂ throughout and will always mean contained in but

not equal.

We also can characterize maximal submodules in terms of kernel of epimorphisms.

For each epimorphism f : M � S with S simple, we know that Ker f is a maximal

submodule of M . Conversely, if L is maximal in M , then L is the kernel of the

natural surjection M � M/L. Thus, we can characterize maximal submodules of M

as kernels of surjections M � S, with S simple.

As well as simple modules, a main focus for our study will be indecomposable

modules.

Definition 1.1.16. An A-module M is called indecomposable if it cannot be written

as a direct sum of two non-trivial submodules. It is called decomposable otherwise.

Definition 1.1.17. An A-module M is called semisimple if it is the direct sum of

a family of simple submodules. A ring A is called semisimple if AA is semisimple.

According to the next theorem, we know that a semisimple algebra is a sum of

simple algebras and the simple summands are isomorphic to matrix algebras.

25

Theorem 1.2. (Wedderburn-Artin Structure Theorem) Let A be a semisimple alge-

bra with r isomorphism classes of simple modules Si, with i = 1, ..., r. Then A is

an external direct sum of full matrix algebras, A ∼= ur
i=1 Matni

(∆i), where ∆i is a

division ring such that ∆i
∼= EndA (Si) and ni = dim∆i

(Si).

Proof. A proof of the Wedderburn Theorem is found in Benson [Ben98a, page 6].

We know from another theorem of Wedderburn that every finite division ring is a

field. Therefore, in the case of a finite dimensional k-algebra A, we have that ∆i is a

finite extension of k.

Definition 1.1.18. If A is an algebra over a field k and S is a simple A-module,

then k is called a splitting field for S if EndA S = k · idM .

Basically, a splitting field for an algebra A is a field k such that for all possible

field extensions k′
, the simple A-modules remains simple over k′

.

The next theorem is one of the main dividing points between ordinary and modular

representation theory.

Theorem 1.3. (Maschke) If k is a field and G a finite group, then the group algebra

kG is semisimple if and only if the characteristic of k is not a divisor of the group

order |G|.

Proof. For a proof see Grove [Gro04, page 176].

According to Maschke’s theorem we know that if p - |G| then indecomposable

and irreducible are the same. However, if p | |G| then it is only true that irreducible

implies indecomposable.

Example 1.1.4. The conclusion of Maschke’s theorem can fail if k is not R or C,

that is the characteristic of the field k divides the order of the group, p | |G|. For

26

example let p be a prime number, let G = Cp = 〈a : ap = 1〉, the cyclic group of order

p, and take k to be the field of integers modulo p, Fp. The operation

aj →
[
1 j
0 1

]
(j = 0, 1, ..., p− 1)

is a representation from G to GL (2, k). The corresponding kG-module is the k-linear

span M = Spank (v1, v2), where, for 0 ≤ j ≤ p− 1,

v1a
j = v1 + jv2,

v2a
j = v2.

Thus, N = Spank (v2) is a kG-submodule of M . But there is no kG-submodule N
′

such that M = N ⊕N
′
, since N is the only 1-dimensional kG-submodule of M .

As in the explanation of an irreducible kG-module of kn in terms of matrices, we

can similarly define what it means to be indecomposable. A module is decomposable

if and only if there is a change of basis such that the matrices of our representation

can be put into the form [
Ag 0
0 Bg

]
. (1.3)

Thus a representation is indecomposable if and only if no change of basis can be found

to put it into the above form (1.3).

Another type of module that we need to discuss that will be of importance to us is

a generalization of a free module F . The easiest example of a free module is a vector

space.

Definition 1.1.19. An A-module P is said to be projective if given A-modules M

and N , a map λ : P → N and an epimorphism µ : M � N there exists a map

f : P →M such that the following commutes:

P
∃f

~~||
||

||
||

λ
��

M
µ // // N

27

The above definition of a projective module is not the only way to think of a

projective module. The following proposition gives us other ways we can consider

projective modules.

Proposition 1.4. Let P be any A-module where A is a k-algebra. Then the following

are equivalent.

1. P is a projective module

2. P is a direct summand of a free module

3. Every epimorphism λ : M → P splits.

Proof. See Dummitt and Foote[DF91, page 375].

Example 1.1.5. Consider the k-algebra of all 2×2 matrices over k and denote it by

M. Then we can take M as a right M module with an action of right multiplication.

This is a free module. Consider the projective module(
1 0
0 0

)
·
(
a b
c d

)
=

(
a b
0 0

)
.

This is a projective module as it is a direct summand of the free module above. How-

ever, it is not free as (
1 0
0 0

)
·
(

0 0
1 1

)
=

(
0 0
0 0

)
As modules that are both projective and indecomposable are important for us, we

make a definition.

Definition 1.1.20. An A-module P that is both projective and indecomposable is

called a projective indecomposable module which we refer to as a PIM.

28

1.2 Radicals and Socles

In the study of A-modules, we will often look at a specific submodule that is important

in our constructions.

Definition 1.2.1. The radical of an A-module M (denoted by RadM) is defined as

the intersection of all maximal submodules of M . (If M has no maximal submodules,

set RadM = M .)

For every nonzero finitely generated A-module M , we can also characterize the

radical in terms of homomorphisms from M to simple modules as follows:

RadM =
⋂

Ker f ,

where the intersection is taken over all epimorphisms f : M � S, with S simple.

Example 1.2.1. If M is a simple kG-module, then RadM = 0 since 0 is the only

maximal submodule of M . More generally, RadM = 0 for every semisimple right

kG-module M . Note, however that it may well happen in a more general setting that

RadM = 0 even though M is not a semisimple module. For example, let M = Z, a

right Z-module. The maximal submodules of M are given by {pZ : p is prime}, and

their intersection is 0. Thus RadM = 0, but M cannot be expressed as a direct sum

of simple submodules.

Definition 1.2.2. The radical series or Loewy series of M is defined inductively

by Rad0 (M) = M , Radn (M) = Rad
(
Radn−1 (M)

)
and the nth radical layer or

Loewy layer is Radn−1 (M) /Radn (M).

In representation theory another important submodule is the following.

Definition 1.2.3. The socle of an A-module M is the sum of all the irreducible

submodules of M , denoted Soc (M).

29

Note: We may also define a module M is to be semisimple (completely reducible) if

M = Soc (M).

Definition 1.2.4. The head or top of a module M is

Head (M) := M/Rad (M) .

As the radical plays an important role for us in our constructions later, we are

interested in some basic properties of radicals.

Proposition 1.5. Let N , M be A-modules.

1. For each A-homomorphism g : N →M , we have g (RadN) ⊆ RadM .

2. If N ⊆M , then RadN ⊆ RadM , and (RadM +N) /N ⊆ Rad (M/N).

3. If N ⊆ RadM , then (RadM) /N = Rad (M/N).

Proof. For a proof see Proposition 5.1 in Curtis and Reiner [CR90, page 103].

We immediately get a useful corollary from Proposition 1.5.

Corollary 1.6. Let M be an A-module. Then M/RadM has radical 0 and RadM

is the smallest submodule M ′ of M such that Rad (M/M ′) = 0.

Proof. By Proposition 1.5.3, with N = RadM , we have

Rad (M/ (RadM)) = (RadM) / (RadM) = 0.

Conversely, if Rad (M/M ′) = 0, then by Proposition 1.5 it follows that RadM ⊆

M ′.

As we have defined the radical of a module, similarly we define the notion of a

radical for a k-algebra A.

30

Definition 1.2.5. The Jacobson radical of A, denoted by JacA, is the radical of

the right regular module AA. Thus

JacA =
⋂

M,M ranging over all maximal right ideals of A.

We have a proposition for radicals of rings similar to proposition 1.5 for modules.

Proposition 1.7. Let A be a k-algebra.

1. The factor ring A/ JacA has radical 0.

2. For any algebra epimorphisms f : A � B, we have f (JacA) ⊆ JacB and f

induces an epimorphism A/ JacA � B/ JacB.

3. For each right A-module M , M · JacA ⊆ RadM .

Proof. For a proof see proposition 5.6 in Curtis and Reiner [CR90, page 105].

In our construction of an Ext-algebra E(A) we will begin with a finite dimensional

algebra A and end up with E(A) which is infinite dimensional. However, it has a

grading to it. We thus make the following definitions.

Definition 1.2.6. A graded vector space is a vector space V which can be written

as a direct sum of the form

V =
⊕
n∈N

Vn

where each Vn is a finite dimensional vector space. For a given n the elements of Vn

are then called homogeneous elements of degree n.

Graded vector spaces are common. For example the set of all polynomials in one

variable form a graded vector space, where the homogeneous elements of degree n are

exactly the polynomials of degree n.

31

Definition 1.2.7. A graded algebra A is an algebra that has a direct sum decom-

position as a graded vector space

A =
⊕
i∈N

Ai = A0 ⊕ A1 ⊕ A2 ⊕ · · ·

such that

Am · An ⊆ Am+n

Elements of An are known as homogeneous elements of degree n.

Since rings may be regarded as Z-algebras, a graded ring is defined to be a graded

Z-algebra.

Examples of graded algebras are common in mathematics:

Example 1.2.2. The most common example of a graded algebra is a polynomial ring.

The homogeneous elements of degree n are exactly the homogeneous polynomials of

degree n.

Definition 1.2.8. The corresponding idea in module theory is that of a graded mod-

ule, namely a module M over a graded algebra A such that

M =
⊕
i∈N

Mi,

as a graded vector space and

Mj · Ai ⊆Mi+j.

1.3 Noetherian and Artinian Rings

Throughout this work our motivation is in dealing with studying finite dimensional

algebras and their modules. Thus we would like to characterize radicals of rings

and the corresponding finitely generated modules in this specific situation. Finite

32

dimensional algebras are part of a more general class of rings known as Artinian and

Noetherian rings. When dealing with these specific type of rings, we have some other

characterizations of the radical of a ring. So we shall first discuss Artinian rings and

Noetherian rings and then present some of their properties.

Definition 1.3.1. A right A-module M is said to be Noetherian if the submodules

of M satisfy the ascending chain condition (ACC), i.e., for every increasing sequence

of submodules of M ,

M1 ⊆M2 ⊆ · · · ,

there exists an integer n such that Mn = Mn+1 = · · · .

Definition 1.3.2. The ring A is said to be right Noetherian if AA is Noetherian,

i.e., if there are no increasing chains of right ideals in A.

Proposition 1.8. Any finite dimensional algebra A is Noetherian. Thus the group

algebra kG of a finite group G is Noetherian.

Proof. Clear by the finite dimensionality of A.

Now we consider the case of rings that satisfy a descending chain condition.

Definition 1.3.3. An A-module M is said to be Artinian or to satisfy the descending

chain condition (DCC) of submodules of M if there exists a k such that

M1 ⊇M2 ⊇ · · · ⊇Mk = Mk+1 = · · · .

Definition 1.3.4. A right Artinian ring is a ring A whose right regular module

AA is Artinian.

A useful criterion is the following:

Proposition 1.9. Every finitely generated right A-module M over a right Artinian

ring A is both Artinian and Noetherian.

33

Proof. For a proof see Curtis and Reiner [CR90, page 41]

As noted in the introduction, one thing that we are interested in is the possible

structure of modules given specific simple modules as the building blocks. The fol-

lowing definition begins to shed light on why we view the simple modules as building

blocks.

Definition 1.3.5. A right A-module M has a composition series if there exists a

descending chain of submodules of M :

M = M1 ⊃M2 ⊃ · · · ⊃Mn = 0,

such that the factor modules {Mi/Mi+1 : 1 ≤ i < n− 1} are simple. The factors of

the composition series are the Mi/Mi+1, and the number of factors is called the length

of the composition series.

Proposition 1.10. A necessary and sufficient condition for a left A-module to have

a composition series is that it is both right Noetherian and right Artinian.

Proof. See Curtis and Reiner [CR90] Section 11.

Corollary 1.11. Let G be any finite group. Any finitely generated kG-module M has

a composition series.

Proof. As kG is finite dimensional, it is both Noetherian and Artinian. So by Propo-

sition 1.10, M has a composition series.

We thus know that the objects we are interested in studying have a composition

series. We now would like to have some sort of uniqueness for the composition series.

This is given in the following theorem known as the Jordan-Hölder theorem.

34

Theorem 1.12. (Jordan-Hölder) Let

0 = M0 < M1 < · · · < Mr = M

and

0 = N0 < N1 < · · · < Ns = M

be two composition series of an A-module M . Then r = s and there exists a permu-

tation ρ such that the composition factors Mi/Mi−1 and Nρ(i)/Nρ(i)−1 are isomorphic

as A-modules.

Proof. For a proof see Curtis and Reiner [CR90, page 79].

As well as viewing a module in terms of its composition series, in many cases

we are interested in decomposing a module into indecomposable modules. We would

thus like to know what type of uniqueness we have for decomposition. The following

theorem answers this question.

Theorem 1.13. (Krull-Schmidt) If M 6= {0} is an A-module and

M = M1 ⊕ ...⊕Mr = N1 ⊕ ...⊕Ns

with indecomposable submodules Mi, Nj such that each EndAMi and EndANj is local

(i.e. has unique maximal two-sided ideal) for i = 1, ..., r and j = 1, ..., s then r = s

and there is a permutation σ ∈ Sr with Mi
∼=A Nσ(i). If M 6= 0 is an A-module

which is Artinian and Noetherian then M is a finite direct sum of indecomposable

A-modules which are uniquely determined up to isomorphism and ordering.

Proof. See Curtis and Reiner [CR90, page 128].

Definition 1.3.6. A right ideal N in a ring A is nilpotent if there is a positive

integer k such that Nk = 0, or equivalently, if x1x2 · · ·xk = 0 for all products of

xi ∈ N . An element x ∈ A is nilpotent if xk = 0 for some k, and a right ideal N is

a nil ideal if each of its elements is nilpotent.

35

In our constructions, we will need to compute the inverse of the sum of a unit

and a nilpotent element in a k-algebra A. The following lemma, which shows the

existence gives the algorithm for finding the inverse in the proof.

Lemma 1.14. Suppose that in a k-algebra A, we have that z = r + n where r is a

unit and n is nilpotent, i.e. there exists an integer s such that ns = 0. Then z is

invertible.

Proof. We wish to find x so that xz = zx = 1. We therefore would like to construct

(r + n)−1. Let

x = r−1 ·
(

1−
(n
r

)
+
(n
r

)2

− · · · ±
(n
r

)s−1

+ 0

)
If we multiply (r + n) by x we have

z · x = (r + n) r−1 ·
(

1−
(n
r

)
+
(n
r

)2

− · · · ±
(n
r

)s−1
)

=
(
1 + nr−1

)(
1−

(n
r

)
+
(n
r

)2

− · · · ±
(n
r

)s−1
)

= 1− nr−1 + · · · ± ns−1r−(s−1) + nr−1 + · · · ∓ ns−1r−(s−1) + 0

= 1.

Similarly, a short computation shows that xz = 1.

The following proposition gives a useful list of properties for Artinian rings.

Proposition 1.15. Assume that A is a right Artinian ring. Then we have the fol-

lowing:

1. The radical of A, JacA is nilpotent.

2. A/ JacA is a semisimple ring.

3. An A-module M is semisimple if and only if M · JacA = 0.

36

4. There are only a finite number of nonisomorphic simple A-modules.

5. A is right Noetherian.

Proof. For a proof see Auslander [ARS95, pages 9-10].

Proposition 1.16. Let A be a right Artinian ring and I an ideal in A such that I is

nilpotent and A/I is semisimple. Then we have I = JacA.

Proof. For a proof see Auslander [ARS95, page 10]

We now have a proposition that lets us relate the radical of a module A to the

module times things from the Jacobson radical of the ring A. We will use this fact to

help us compute the radical of a module knowing the radical of the respective ring.

Proposition 1.17. Let M be a finitely generated module over a right Artinian ring

A. Then we have RadM = M · JacA.

Proof. For a proof see Benson [Ben98a, page 4].

The last result in this section is often used in representation theory. It will be

used to help us prove the existence of projective covers in the following section.

Lemma 1.18. (Fitting) Suppose that the A-module M has a composition series and

ϕ ∈ EndA (M). Then for large enough n,

M = Im (ϕn)⊕Ker (ϕn) .

Proof. For a proof see Benson [Ben98a, page 8]

As the k-algebras that we are mainly interested in are finite dimensional, and

all finite dimensional algebras are Artinian, we may use all of the above results for

our work. From here on out, we assume that all of our k-algebras A are finite

dimensional unless otherwise noted.

37

1.4 Projective Covers

As we will see, one of the important constructions in studying cohomological proper-

ties of a module is a projective resolution. We not only want to be able to construct

projective resolutions, but we will want to do this in some sort of way that is as small

as possible. Thus we first need to define the notion of a projective cover of a module.

We will define a projective cover in terms of a special type of epimorphism.

Definition 1.4.1. Let M and N be A-modules. An epimorphism ε : M � N is

called essential if for each sequence of A-homomorphisms X
τ→ M

ε→ N such that

ετ is surjective, then τ is also surjective.

In other words, ε : M → N is essential if no proper submodule of M is mapped

onto N by ε.

Definition 1.4.2. A projective cover of an A-module M is a projective module

P (M) together with an essential homomorphism ε : P (M) � M .

This definition is saying that if P (M)
ε

� M is a projective cover of M , then no

proper submodule of P (M) is mapped onto M .

Some modules need not have projective covers. For example, the Z-module Z/2Z

has none; for let f : P → Z/2Z be a projective cover with P Z-projective. Then P is

Z-free, and 3P is a proper submodule of P for which f (3P) = Z/2Z.

In our case, however, the algebra kG is finite dimensional and this is more than

enough to ensure the existence of projective covers.

Theorem 1.19. Let M be a finitely generated A-module. Then M has a projective

cover.

Proof. For a proof see Curtis and Reiner [CR90, pages 132-133].

38

The next thing that we ask is, given a projective cover, is it unique? The answer

is in the following proposition.

Proposition 1.20. Projective covers are unique up to isomorphism, assuming there

are any. In other words, given two projective covers P
ε→ M and P ′ ε′→ M , there

exists an isomorphism θ : P → P
′
such that ε = ε′θ.

Proof. For a proof see [CR90, page 131].

Proposition 1.21. Let f : M � N be an epimorphism of finitely generated A-

modules. The following are equivalent:

1. f is essential.

2. Ker f ⊆ RadM .

Proof. This is a consequence of Proposition 1.17.

As immediate consequences of Proposition 1.21 we have the following. They are

important results for us in determining all of the possible PIMs of a module.

Corollary 1.22. Let S1, ..., Sn be a complete list of nonisomorphic simple A-modules.

Then their projective covers P1, ..., Pn are a complete list of nonisomorphic indecom-

posable projective A-modules (PIMs). Moreover, each Pi is isomorphic to a summand

of the right regular module AA.

Corollary 1.23. Let P be a finitely generated projective A-module. Then the natural

epimorphism P � P/RadP gives a projective cover of the A-module P/RadP .

Proof. The surjection P � P/RadP is essential by Proposition 1.21.

Part of our algorithm will also rely on the fact that there is a 1-1 correspondence

between the isomorphism classes of projective indecomposable kG modules and the

39

isomorphism classes of simple kG modules. Moreover, given a projective indecom-

posable module P , we shall see that the correspondence is given by S ∼= P/Rad (P).

But before we show this, we would like to discuss how we can get representatives

for the projective indecomposable modules. This comes from finding a special type

of projection operator known as an idempotent. We will discuss these in the next

section and then return to giving the proof of the relation between simple modules

and their projective covers.

1.5 Idempotents

Suppose A = kG. As kG is finite dimensional, we have a finite number of simple

modules (up to isomorphism) from proposition 1.7. We will show that there is a 1-1

correspondence between the PIMs and the simple modules. We would like to explicitly

write down this correspondence. We shall see that each projective indecomposable

A-module M (up to isomorphism) can be represented as the right module eA where

e is a primitive idempotent. We now present the needed definitions and theorems.

Definition 1.5.1. Suppose A is a k-algebra. An element e ∈ A is called an idem-

potent if e2 = e.

Example 1.5.1. If we consider all 2× 2 matrices over C we have that[
1 0
0 1

]
,

[
1 0
0 0

]
, and

[
0 0
0 1

]
are all idempotents.

Example 1.5.2. Consider the group algebra of the symmetric group on 3 letters, S3

over the field F2. Then e = 1 · id +1 · (123) + 1 · (132) is an idempotent as e2 =

(1 + 1 · (123) + 1 · (132))2 = 3 · id +3 · (123)+3 · (132) = 1 · id +1 · (123)+1 · (132) = e.

Definition 1.5.2. Two idempotents e and e
′
in a ring A are said to be orthogonal

if ee′ = e′e = 0.

40

Example 1.5.3. In example 1.5.1 we see that

[
1 0
0 0

]
and

[
0 0
0 1

]
are clearly orthogonal.

Definition 1.5.3. We call an idempotent e ∈ A primitive if it cannot be expressed

as the sum of two nonzero orthogonal idempotents.

Example 1.5.4. M is a primitive idempotent and I is not where,

M =

[
1 0
0 0

]
and I =

[
1 0
0 1

]
=

[
1 0
0 0

]
+

[
0 0
0 1

]
Definition 1.5.4. A central idempotent in A is an idempotent in the center of A.

Definition 1.5.5. A primitive central idempotent is a central idempotent not

expressible as the sum of two orthogonal central idempotents.

There is a one-one correspondence between expressions 1 = e1 + · · · + es with ei

orthogonal central idempotents and direct sum decompositions

A = B1 ⊕ · · · ⊕Bs (1.4)

of A as two-sided ideals, given by Bi = eiA.

Now suppose that A satisfies the D.C.C. Then we can write A = B1 ⊕ · · · ⊕ Bs

with the Bi as indecomposable two-sided ideals.

Lemma 1.24. The decomposition (1.4) above of A into two-sided ideals is unique; i.e.

if for some other decomposition A = B
′
1⊕· · ·B

′
t then s = t and for some permutation

ρ of {1, ..., s} we have Bi = B
′

ρ(i).

Proof. Write 1 = e1+· · ·+es = e
′
1+· · ·+e

′
t. Then eie

′
j is also a central idempotent (or

zero) for each i, j. Thus ei = eie
′
1+· · ·+eie

′
t, so that for a unique j, ei = eie

′
j = e

′
j.

41

Definition 1.5.6. The indecomposable two-sided ideals in this decomposition are

called the blocks of A.

Definition 1.5.7. Suppose M is an indecomposable A-module. Then M = e1M ⊕

· · ·⊕ esM shows that for some i, eiM = M and ejM = 0 for i 6= j. We then say that

M belongs to the block Bi.

The fact that we have a finite dimensional algebra, allows us (up to isomorphism)

to find all of the PIMs. We do this by decomposing the regular representation as in

the following theorem.

Theorem 1.25. Let A be a finite dimensional k-algebra. Let S1, ..., Sr be the sim-

ple A-modules up to isomorphism and ∆i = EndA Si. Then there are r projective

indecomposable modules P1, ..., Pr (up to isomorphism) with Pi/RadPi
∼=A Si and

AA =
r⊕

i=1

(Pi,1 ⊕ ...⊕ Pi,fi
) with Pi,j

∼=A Pi

where fi = dim∆i
Si. If k is a splitting field for A then the fi are just the degrees of

the irreducible representations of A.

Proof. For a proof see [ARS95, page 14].

The simple A-modules Si = Pi/RadPi and PIMs Pi are classified into blocks. If

a module is in a certain block, then so are all its composition factors. Thus if PIMs

Pi and Pj (resp. simple modules Si and Sj) are in different blocks, then there are no

possible homomorphisms between Pi and Pj.

Theorem 1.26. Let P be an indecomposable kG-module. Then P = ekG where e

is some primitive idempotent in kG. The module P has a simple head (top) and a

simple socle. Moreover, P/RadP ∼= Soc (P).

Proof. For a proof see Benson [Ben98a, page 12]

42

The following theorem gives a way of viewing the homomorphisms from a PIM

eiA = Pi to an A-module M by just looking at the image of the idempotent ei.

This is important in the construction of our maps in our implementations in GAP.

This basically means that we can just consider maps by keeping the generators. A

generator is just the image of an idempotent for a PIM.

Theorem 1.27. If e ∈ A is an idempotent and M is an A-module, then

1. HomA (eA,M) ∼= Me as k-vector spaces, and

2. EndA (eA) ∼= eAe as k-algebras.

Proof. 1. A natural isomorphism from HomA (eA,M) to Me is given by

ϕ 7→ ϕ (e) = ϕ
(
e2
)

= ϕ (e) e ∈Me

for ϕ ∈ HomA (eA,M). The inverse is given as Me→ HomA (eA,M) by

ev 7−→ ϕme with ϕme (ea) = mea for a ∈ A, m ∈M

2. Consider the same map defined in (1.) with M = eA. We have a ring isomor-

phism EndA (eA) → eAe, since

ϕ · ψ (e) = ϕ (ψ (e) e) = ψ (e)ϕ (e) for ϕ, ψ ∈ EndA eA.

From the previous theorem 1.27 we can deduce that HomA (eA,M) ∼= Me as

eAe-modules. We will rely on part (1.) of theorem 1.27 in our algorithms. All of

the PIMs (projective indecomposable A-modules) are given to us as eA. These are

the projective modules that we will have in our resolutions of simple modules as the

PIMs are the projective covers of the simples. We thus will be able to give all of the

maps between PIMs just by determining where the idempotents are sent.

43

There is a close connection between the decomposition of A into a sum of inde-

composable A-modules and the decomposition of 1 into a sum of primitive orthogonal

idempotents. The next result gives the relation between the simple A-modules and

the projective indecomposable A-modules in terms of the primitive idempotents.

We use the following proposition in our construction of a minimal projective res-

olution using linear algebra.

Proposition 1.28. Let M be a finitely generated A-module.

1. Let f : P � M be an epimorphism with P projective. Then f gives a projective

cover of M if and only if Ker f ⊆ P · JacA = RadP .

2. For each A-module M , the modules M and M/RadM have the same projective

cover as A-modules.

3. Projective covers are additive, that is, if fi : Pi →Mi, 1 ≤ i ≤ k, are projective

covers, then so is

uk
i=1fi : uk

i=1Pi → uk
i=1Mi.

Proof. For a proof see Curtis and Reiner [CR90, page 133]

We have a direct sum decomposition of the regular representation of A as

AA =
r⊕

i=1

niPi

with Pi/RadPi
∼= Si by Theorem 1.25. By the Krull-Schmidt theorem 1.13 we know

that every PIM is isomorphic to one of the Pi = eiA for a primitive idempotent.

The set {ei} of primitive idempotents that we choose are necessarily orthogonal. We

now know the PIMs and their corresponding simple modules which are their heads.

Lastly, we describe the homomorphisms.

44

Lemma 1.29.

HomA (Pi, Sj) ∼=

{
∆i, if i = j;

0, otherwise.

where ∆i is a division ring such that ∆i
∼= EndA (Si).

Proof. Pi has a unique top composition factor, and this is isomorphic to Si and

therefore by Schur’s Lemma 1.1 the result follows.

Lemma 1.30. Given PIMs Pi and Pj (given as projective covers for simples Si and

Sj) we have that dim∆i
HomA (Pi, Pj) is the multiplicity of the simple module Si as a

composition factor of Pj.

Proof. For a proof see Benson [Ben98a, page 14].

The last lemma motivates the following definition.

Definition 1.5.8. Let S1, ..., Sr be a complete set of simple A-modules and Pi = P (Si)

be the projective cover of Si for i = 1, ..., r. Let ci,j be the number of composition

factors in a fixed composition series of Pi which are isomorphic to Sj. Then the r× r

matrix [ci,j] is called the Cartan matrix of A.

To get a feel for idempotents, projective indecomposable modules, and radicals

we give an example.

Example 1.5.5. Let G = S3 and k a finite field of characteristic 3. There are exactly

two simple kS3-modules M1 and M2 both of dimension 1. M1 the trivial representation

and M2 the module afforded by the sign representation, g 7→ sign (g). We know that

there must be primitive idempotents e1 and e2 ∈ kS3 such that

kS3 = e1kS3 ⊕ e2kS3.

It is not difficult to find such idempotents. We wish to investigate the precise structure

of the projective indecomposable modules e1kS3 and e2kS3. Let e1 = 1
2
(1 + (12)) and

find P1 = e1kG is:

45

P1 = Spank (e1, e1(123), e1(132))

Rad (P1) = Spank (e1 − e1(132), sG)

Soc (P1) = Spank (sG)

with sG =
∑

g∈G g = 2 (e1 + e1 (123) + e1 (132)). We have that sG is the module

identified with the trivial representation and we have that P1/Rad (P1) ∼= Soc (P1).

Similarly as e1(1 − e1) = e1 − e21 = e1 − e1 = 0 we take e2 = 1 − e1 = 1
2
(1− (12)).

We have that P2 = e2kG is:

P2 = Spank (e2, e2 (123) , e2 (132))

Rad (P2) = Spank (1 + (123) + (132) , aG)

Soc (P2) = Spank (aG)

with aG =
∑

g∈G sgn (g) g. It is easy to see that the composition factors of P1 and P2

are M1, M2, M1 and M2, M1, M2 respectively.

If char k = 2 then kG has a simple module M1 = kG, M2 with dimkM2 = 2. Thus

kG ∼= P (M1)⊕ P (M2)⊕ P (M2) with dimk P (Mi) = 2 (i = 1, 2).

The Cartan matrices of kS3 for k = F2 and F3

C =

(
2 0
0 1

)
(char k = 2) and C =

(
2 1
1 2

)
(char k = 3) .

46

1.6 Basic Algebras

As noted in the introduction, we are interested in studying some rather large algebras

via computational methods on a computer. As the dimension of the finite dimensional

algebra kG is the size of the group G, this can be a rather large object to deal with

on a computer. For example the Higman Sims group is one of the small to medium

sized sporadic simple groups with |G| = 44, 352, 000. Its group algebra is too large

to do any meaningful computations with it. In many instances it is technically and

computationally easier to deal with modules over finite dimensional k-algebras A

which have the property that if A =
⊕n

i=1 Pi with the Pi projective indecomposable

modules (PIMs), then Pi �A Pj for i 6= j. Such algebras A are called basic algebras.

The process of computing the basic algebra of group algebras has been implemented

in a GAP package by T. Hoffman [Hof04]. His work gives us a large data base for

basic algebras of group algebras and the ability to compute more. Our implementation

begins by having a basic algebra, however, we include the results about basic algebras

for completeness.

Example 1.6.1. Consider a p-group G and k = Fp. Then as the only simple kG-

module is the trivial module, kG is a basic algebra.

Before we go further into detail about basic algebras and their constructions, we

first need to define some basic notions from category theory.

1.6.1 Category Theory

We now introduce some basic notions from category theory that will be needed in

discussing the equivalence of the category of finitely generated kG-modules (modkG)

and finitely generatedB-modules (modB) whereB is a basic algebra. A good reference

for this material is Hilton and Staumbach [HS97].

Definition 1.6.1. A category C has three pieces of data:

47

1. A class of objects Obj (C),

2. For each pair M,N ∈ Obj (C), a set C (M,N) of morphisms from M to N ,

3. The set C (M1,M2)×C (M2,M3) consists of pairs (f, g) where f : M1 →M2 and

g : M2 →M3 and we write the composition of f and g as g ◦ f . The composite

function g ◦ f is the function h from M1 to M3 given by

h(a) = g(f(a)), a ∈M1.

For each triple M1,M2,M3 ∈ Obj (C),there is a law of composition g ◦ f

C (M1,M2)× C (M2,M3) → C (M1,M3)

which satisfy the following axioms:

A1. The sets C (M1, N1) and C (M2, N2) are disjoint unless M1 = M2 and N1 =

N2;

A2. The morphisms f ∈ C (M1,M2), g ∈ C (M2,M3) and h ∈ C (M3,M4)

satisfy the associative law of composition, i.e.,

h (gf) = (hg) f ;

A3. There is a morphism 1M : M → M such that, for any f : M → N1,

g : N2 →M ,

f1M = f and 1Mg = g,

for all M,M1,M2,M3,M4, N1, N2 ∈ Obj (C).

In our work, we are interested in finitely generated A-modules.

Example 1.6.2. Let A be an finite dimensional algebra (a group algebra in our

case). We denote the category of finitely generated A-modules by modA. The ob-

jects we take are finitely generated A-modules, M , N , and the morphisms are the

A-homomorphisms, HomA (M,N).

48

We are also interested in the relationship between categories.

Definition 1.6.2. Let C and D be categories. A functor F : C → D is a rule which

assigns to each object M ∈ Obj (C) an object F (M) ∈ Obj (D) and to each morphism

f ∈ C (M,N) a morphism F (f) ∈ D (F (M), F (N)), such that

F (fg) = F (f)F (g),

for M,N,O ∈ Obj (C), f ∈ C (M,N) and g ∈ C (O,M), and

F (1M) = 1F (M).

Definition 1.6.3. Let F and G be functors from the category C to the category

D. Then a natural transformation t from F to G is a rule assigning to each

object M ∈ C a morphism tM : F (M) → G(M) in D such that for any morphism

f ∈ C (M,N), the diagram

F (M)
tM //

F (f)

��

G(M)

G(f)

��
F (N)

tN // G(N)

commutes. If tM is an isomorphism for every M ∈ C, then t is called a natural

equivalence, and the functors F and G are said to be naturally equivalent.

Definition 1.6.4. Let C and D be two categories. We call C and D equivalent if

there exist functors

F : C → D

and

G : D → C

such that F ◦G and G ◦ F are naturally equivalent to the identity functors of D and

C, respectively.

49

Example 1.6.3. Let Bk denote the category of finite dimensional vector spaces over

the field k with linear transformations as the morphisms. Let V be a vector space

over a field k, let V ∗ be the dual vector space and V ∗∗ be the double dual. There is a

linear map ιV : V → V ∗∗ given by v 7→ ṽ where ṽ (ϕ) = ϕ (v), v ∈ V , ϕ ∈ V ∗, and

ṽ ∈ V ∗∗. Then ι is a natural transformation from the identity functor I : Bk → Bk

to the double dual functor ∗∗ : Bk → Bk.

1.6.2 Morita Theory

Definition 1.6.5. We call the finite dimensional algebras A and B Morita equiv-

alent if the categories modA and modB are equivalent.

When we compute the Morita equivalent basic algebra B of a group algebra kG

we lose information about the group, however, we keep many important properties as

Morita equivalence is a strong equivalence. The following lemma gives many of the

properties that are preserved.

Lemma 1.31. Let A and B be Morita equivalent algebras with F : modA → modB

and G : modB → modA the functors for this equivalence. Then the following hold for

M , M ′, M ′′ in modA.

1. The sequence

0 −→M ′ f−→M
g−→M ′′ −→ 0

is (split) exact if and only if the sequence

0 −→ F (M ′)
F (f)−→ F (M)

F (g)−→ F (M ′′) −→ 0

is (split) exact.

2. M is projective if and only if F (M) is projective.

50

3. f : M → M ′ is a projective cover if and only if F (f) : F (M) → F (M ′) is a

projective cover.

4. M is simple (semisimple) if and only if F (M) is simple (semisimple).

5. M is indecomposable if and only if F (M) is indecomposable.

Furthermore, the lattice of submodules of M is isomorphic to the lattice of submodules

of F (M). This implies that F (Rad (M)) = Rad (F (M)). We also know that for

Morita equivalent algebras A and B, the number of isomorphism classes of simple

modules is the same.

Proof. Proofs of the statements in this lemma can be found in [AF92, pages 254–

258].

In general, we are not in the situation of the above example, i.e., we start with

an algebra that is not basic and want to construct a basic algebra that is Morita

equivalent to our original algebra. The following gives a method of constructing the

basic algebra.

Theorem 1.32. Let A be a finite dimensional algebra. Let S1, ..., St be the simple

A-modules (up to isomorphism) and for each i = 1, ..., t let Pi be the projective cover

of Si. Let

P = ut
i=1Pi

and

B = EndA (P, P) = ut
i,j=1 HomA (Pi, Pj) .

Then B is a basic algebra that is Morita equivalent to A.

Proof. For a proof see [ARS95, pages 35-36]

51

Example 1.6.4. Consider the k-algebra of all 2×2 matrices over k and denote it by

M. Then we can take M as a right M module with an action of right multiplication.

Up to isomorphism there is one PIM P with matrices of the form:(
1 0
0 0

)
·
(
a b
c d

)
=

(
a b
0 0

)
Then End(P) = k is Morita equivalent to M.

We will see later that the basic algebra B of a group algebra kG will be the starting

point for us in our algorithm of computing the cohomology ring and Ext-algebra of

group algebras. What we will do is simply compute the Ext-algebra for B and we will

be able to derive from lemma 1.31 that there is an isomorphism to the Ext-algebra of

kG (see Theorem 2.11). To end this section, we include a result we use in Theorem

2.11.

Proposition 1.33. Let F : modA → modB and be G : modB → modA be the functors

for the equivalence of Morita equivalent finite dimensional algebras A and B. Then

for each M,N in modA the restriction of F to HomA (M,N) is an abelian group

isomorphism

F : HomA (M,N) −→ HomB (F (M), F (N))

such that F (f) is an epimorphism (monomorphism) in modB if and only if f is an

epimorphism (monomorphism) in modA. Moreover, if M 6= 0, then this restriction

F : EndA(M) −→ EndB(F (M))

is a ring isomorphism.

Proof. See Anderson and Fuller [AF92, page 252].

1.7 Quivers and Path Algebras

Our alternative approach to using linear algebra to compute projective resolutions

will use Gröbner basis theory. We wish to develop a theory for Gröbner bases over

52

path algebras, which are generally noncommutative. The reason we use this approach

is that from Gabriel’s theorem 3.1, a basic algebra can be given as the quotient of a

path algebra kΓ by a relations ideal I contained in the ideal generated by paths of

length two. We first present the basic definitions and theorems from path algebras.

Definition 1.7.1. A quiver Γ is a directed graph. Loops and multiple edges are

allowed. The edges are called arrows. Each arrow a is directed so it has an origin

vertex o(a) and a terminus vertex τ(a). A finite quiver is a quiver with finitely

many arrows and vertices. A path in Γ of length l is a sequence of arrows a1, ..., al

such that τ(ai) = o(ai+1) for 1 ≤ i ≤ l − 1. The path is denoted a1 · · · al. For each

vertex v there is a vertex path of the same name with length 0 such that v2 = v.

We shall assume that all of our quivers are finite unless otherwise noted. Next we

describe a way of giving a quiver Γ an algebra structure.

Definition 1.7.2. A path algebra kΓ over a field k is the k-algebra with a k-

basis consisting of the finite directed paths in Γ. Thus, elements of kΓ are the k-

linear combinations of paths in Γ. We define a multiplication on paths p and q by

concatenation pq if τ(p) = o(q) and as 0 otherwise. We view the vertices as paths of

length 0 with multiplication given as follows. If v and w are vertices and p is a path,

we let v ·w be v if v = w and 0 otherwise. We let v · p = p if v is the origin of p and

0 otherwise, and we define p · w similarly. The multiplication on paths is extended

linearly to arbitrary elements of kΓ.

Example 1.7.1. For n ≥ 1, let Γ be the quiver with one vertex v and n arrows

a1, ..., an, all loops at v. Then the path algebra kΓ is the free associative algebra

k 〈a1, ..., an〉 .

Example 1.7.2. The following is an example of a finite dimensional path algebra.

Note that to be finite dimensional there can be no loops. Let k be any field. Let Γ be:

•
v3

a−→ •
v1

b−→ •
v2

53

A basis for the path algebra kΓ is

{v1, v2, v3, a, b, ab}

As mentioned previously, we have a relation between the basic algebra B of a

group algebra kG and the quotient of a path algebra. Thus the motivation for the

use of Gröbner basis theory comes from the following theorem.

Theorem 1.34. Let k be a splitting field for Λ a finite dimensional basic k-algebra.

Then there is a finite directed graph Γ and an ideal I contained in the ideal generated

by the paths of length 2 such that Λ = kΓ/I.

Proof. For a proof see Benson [Ben98a, page 103].

Although this is merely an existence theorem, as a result of the ideas in section

1.6, there is a constructive method for finding such a graph Γ and an ideal I. See

Hoffman [Hof04] and Theorem 3.1.

1.7.1 Ideals in Path Algebras

Throughout this section we let k be a field, Γ be a finite quiver, I be an ideal in the

path algebra kΓ, and J the ideal in kΓ generated by the arrows of Γ.

Definition 1.7.3. Let I be an ideal in the path algebra kΓ. If there exists N ≥ 2 such

that JN ⊆ I ⊆ J2 then we call the pair (Γ, I) a special quiver with relations. We

shall denote the quotient algebra kΓ/I = Λ.

Remark 1.7.1. The standard definition of a quiver with relations does not require

Γ to be finite, nor does it demand that some JN be contained in I. Hence the word

“special.”

The following is an example of a special quiver with relations.

54

Example 1.7.3. Let k = F2 and Γ given as

v1

a // v2
b

oo

Let I = 〈aba, bab〉. Then (Γ, I) is a special quiver with relations.

Definition 1.7.4. Let kΓ be a path algebra, and v a vertex of Γ. The vertex simple

module of kΓ associated to v is one-dimensional and v acts on it as the identity.

The remaining vertices lie in the annihilator of this module, as do the arrows. Denote

this module by Sv.

Note that for Sv a vertex simple kΓ-module, if (Γ, I) is a special quiver with

relations then Sv is also a simple Λ = kΓ/I-module. We also refer to it as a vertex

simple for Λ. This is true as we have that I ⊆ Ann (Sv), the annihilator of Sv, i.e. all

x ∈ kΓ such that Sv · x = 0.

Lemma 1.35. Let k be a field, let Γ be a quiver, and let (Γ, I) be a special quiver

with relations. Then the following hold for Λ = kΓ/I:

1. The k-algebra Λ is finite-dimensional. The ideal J/I is the Jacobson radical of

Λ, and its nilradical.

2. The simple Λ-modules are in one-one correspondence with the vertices of Γ. For

a vertex v, the vertex simple Sv has projective cover evΛ. The map ε : evΛ → Sv

is given for a ∈ evΛ by a 7→ a+ Rad evΛ.

Proof. For a proof see Green [Gre97, page 9].

55

Chapter 2

Cohomology and Ext

Recall that according to Maschke’s theorem 1.3 if the characteristic p of the field k

does not divide the order of G, then we know that all kG-modules are semisimple.

When p does divide the order of G, this is no longer true. In this situation, a new

class of interesting modules arises which are no longer semisimple. However, any

kG-module still has a composition series. The reconstruction of a kG-module in the

case where p divides the order of the group G from simple composition factors is far

more complicated. As we previously mentioned, this is a difficult task that we call

the extension problem. The approach we take to studying the extension problem is

applying methods from homological algebra.

The definition of an Ext-algebra may be given in terms of equivalence classes of

long exact sequences which is a useful theoretical tool (for more see [HS97, pages 84-

94,148-155]). However, for computational purposes a more practical way of describing

the Ext-algebra is by using minimal projective resolutions. The outline of a specific

computational implementation using projective resolutions was first sketched in 1997

by Carlson, Green, and Schneider [CGS97]. The literature covers two generally differ-

ent ways of carrying out the computation of projective resolutions; one using linear

algebra and one using Gröbner basis theory. In this chapter we focus on the lin-

ear algebra approach and in chapter 3 we outline the method using Gröbner basis

theory. Before we outline the linear algebra approach, we review some basics from

homological algebra.

56

2.1 Homological Algebra

One of our ultimate goals in this dissertation is to make a cohomological computation

for the Morita equivalent basic algebra B of our given finite dimensional algebra

kG. To do this we will need to define the notion of a projective resolution, group

cohomology, and Ext-algebra.

Definition 2.1.1. A chain complex C over A is a collection of right A-modules

Cn indexed by Z with homomorphisms ∂n : Cn → Cn−1 such that ∂n ◦ ∂n+1 = 0.

Definition 2.1.2. Let C and D be chain complexes. A chain map f : C → D

consists of A-module homomorphisms fn : Cn → Dn, with n ∈ Z, such that the

diagrams

Cn
∂n //

fn

��

Cn−1

fn−1

��
Dn

∂′n−1 // Dn−1

commute for all n.

Next, we define one of the most important notions of homology. Let C be a

chain complex over A. The condition ∂n ◦ ∂n+1 = 0 implies that Im ∂n+1 ⊆ Ker ∂n.

To measure how close a chain complex is to being an exact sequence we make the

following definition.

Definition 2.1.3. Given a chain complex C over A we define the (n-th) homology

module of C as

Hn(C) = Ker ∂n/ Im ∂n+1.

Definition 2.1.4. A cochain complex C over A is a collection of right A-modules

Cn indexed by Z with homomorphisms ∂n : Cn → Cn+1 such that ∂n ◦ ∂n−1 = 0.

Cochain maps are defined analogously to chain maps with the arrows being re-

versed. Similarly we define the cohomology module and the rest of the definitions we

make with chains are made for cochains.

57

Definition 2.1.5. Let C and D be chain complexes with chain maps f, g : C → D.

We call f and g chain homotopic if there exist homomorphisms hn : Cn → Dn+1,

with n ∈ Z, such that fn − gn = ∂
′
n+1 ◦ hn + hn−1 ◦ ∂n.

· · · // Cn+1
∂n+1 //

fn+1 gn+1

��

Cn

hn

����
��

��
��

��
��

��
��

��
��

∂n //

fn gn

��

Cn−1

hn−1

����
��

��
��

��
��

��
��

��
��

//

fn−1 gn−1

��

· · ·

· · · // Dn+1

∂
′
n+1 // Dn

∂
′
n // Dn−1

// · · ·

The chain complexes C and D are called chain homotopy equivalent if there are

chain maps f : C → D and g : D → C such that f ◦ g and g ◦ f are chain homotopic

to the chain maps idD and idC respectively.

We note that chain homotopy is an equivalence relation on chain complexes.

Proposition 2.1. Let C and D be chain (cochain) complexes. If C and D are chain

(cochain) homotopy equivalent then Hn (C) ∼= Hn (D) (resp. Hn (C) ∼= Hn (D)) for

all n ∈ Z.

Proof. For a proof see [HS97, page 124].

2.2 Projective Resolutions

Definition 2.2.1. Let M be an A-module. A projective resolution (P•, ε) of M

is an exact sequence of projective modules Pi:

· · · ∂3−→ P2
∂2−→ P1

∂1−→ P0
ε−→M −→ 0

The first important thing to note here is that projective resolutions always exist.

This is because every A-module M is the quotient of a free A-module and all free

modules are projective.

58

Example 2.2.1. Suppose that G is a cyclic p-group of order pn, G =
〈
x : xpn

= 1
〉
.

Let NG =
∑

g∈G g be the sum of the elements in G. Then we have a periodic projective

resolution (P•, ε) of the trivial module k of the form

· · · NG−→ P3
x−1−→ P2

NG−→ P1
x−1−→ P0

ε−→ k −→ 0

where Pi
∼= kG for every i. That is, the boundary map on Pi for i odd is multiplication

by x − 1 and for i even it is multiplication by NG. The exactness of this resolution

can be checked by noting that the elements{
1, x− 1, (x− 1)2 , ..., (x− 1)pn−2 ,NG

}
form a k-basis for the free k-module Pi for every i.

We next compare how two resolutions of an A-module M are related. This is

answered by the following proposition.

Proposition 2.2. Two projective resolutions (P•, ε) and (P
′
•, ε

′) of an A-module M

are homotopy equivalent.

Proof. The proof of this proposition is found in [HS97, page 129].

Thus any two resolutions of M are equally good from a theoretical point of view.

However free resolutions tend to grow rather quickly in the case of group algebras.

Thus when we consider computing resolutions we would like to have some notion

of minimality and would like to find a way to compute a minimal resolution. The

minimal resolutions will be the ones which have the smallest possible k-dimension of

each projective module in the resolution.

Definition 2.2.2. Let P be a projective resolution for the A-module M . We call

(P•, ε) a minimal projective resolution for M if for all n ∈ Z+ we have

Im ∂n ⊆ RadPn−1.

59

Throughout the construction of our minimal resolutions, we compute kernels of

homomorphisms. These kernels are sometime referred to as Heller modules. We now

give their definition.

Definition 2.2.3. Let (P•, ε) be a minimal projective resolution of an A-module M .

We define the Heller Module Ωn for n > 0 as:

Ωn (M) := Ker ∂n−1 = Im ∂n

where Ker ∂0 := Ker ε, and for n = 1 sometimes we write Ω1 (M) as Ω (M).

Recall that for finitely generated A-modulesM , we have the existence of projective

covers from theorem 1.19 on page 37. Thus we can use the existence of projective

covers to come up with a straightforward method of constructing a minimal resolution.

That is, let ε : P0 → M be a projective cover of M . Then the kernel of ε is Ω (M)

which has no projective submodules. In particular, from Propositions 1.21 and 1.5

we know that the inclusion i1 : Ω (M) → P0 has image in RadP0. Now let ω1 : P1 →

Ω (M) be the projective cover of Ω (M). The kernel of ∂1 is Ω2 (M) and the inclusion

i2 : Ω2 (M) → P1 has image in the radical. We continue to build a resolution in this

fashion. The boundary map ∂n : Pn → Pn−1 is the composition in ◦ ωn.

Algorithm 2.2.1. Minimal Projective Resolution

Input: M , an A-module, n the number of steps in the resolution we wish to compute.

Output: A projective resolution of M to n steps.

1: Compute P (M) the projective cover (unique up to isomorphism) with an essential

homomorphism ε : P (M) � M .

2: Compute the kernel of ε, Ω1 (M). Note this is an A-submodule of P (M)

3: Construct the map Ω1 (M) → P (M) which is just the injection map, denoted ι1.

4: Since Ω1 (M) is also an A-module, it has a projective cover P (Ω1 (M)) with an

essential homomorphism ω1 : P (Ω1 (M)) � Ω1 (M).

60

5: We now define ∂1 : P (Ω1 (M)) → P (M) as the composition ι1 ◦ ω1.

6: Repeat procedure until we have reached the desired n.

This procedure results in the following diagram:

· · · // P (Ω2(M))
∂2 //

ω2

&&MMMMMMMMMM
P (Ω1(M))

∂1 //

ω1

&&MMMMMMMMMM
P (M) ε //M

Ω2(M)

ι2
88qqqqqqqqqq

Ω1(M)

ι1
::uuuuuuuuu

(2.1)

Proposition 2.3. The above construction in Algorithm 2.2.1 is a minimal projective

resolution.

Proof. Clearly all of the terms Pn are projective by construction. It is also clear

that Im ∂n = Ker ∂n−1. For minimality, we note that each P (Ωn(M)) is a projective

cover. Thus by definition each map ωn is essential. By Proposition 1.21 we know

that Ker (ωn) ⊆ RadP (Ωn(M)). As each map ιn is injective, we know that Ker ∂n =

Kerωn for each n. Thus

Im ∂n = Kerωn−1 ⊆ RadP
(
Ωn−1(M)

)
.

2.3 The Ext-Algebra and Cohomology Ring

Our ultimate goal is to compute the cohomology ring and the Ext-algebra of a finite

dimensional algebra A. Let M and N be A-modules, and suppose

· · · −→ P2
∂2−→ P1

∂1−→ P0
ε−→M −→ 0

is a projective resolution for M which we denote (P•, ε). We may form a related

sequence by taking homomorphisms of each of the terms into N , keeping in mind

61

that this reverses the direction of the homomorphisms in the resolution. We obtain

the sequence:

0 → HomA (M,N)
ε∗−→ HomA (P0, N)

∂∗1−→ HomA (P1, N)
∂∗2−→ HomA (P2, N) −→ · · ·

and ∂∗n and ε∗ denote the induced maps from HomA (Pn−1, N) to HomA (Pn, N) in-

duced from ∂n and ε. The sequence is not necessarily exact, however, it is a cochain

complex. The corresponding cohomology groups have a special name.

Definition 2.3.1. Let M and N be A-modules. Let (P•, ε) be a projective resolution

of M . Let ∂∗n : HomA (Pn−1, N) → HomA (Pn, N) as above. The group Extn
A (M,N)

for n ≥ 0 is called the nth cohomology group derived from the functor HomA (−, N)

and is defined as:

Extn
A (M,N) =

Ker ∂∗n+1

Im ∂∗n
= Hn (HomA (P•, N)) ,

where Ext0
A (M,N) = Ker ∂∗1

∼= HomA (M,N).

The first important thing that we note from a computational point of view is the

this group is independent of the choice of resolution, and thus we would always like

to use a minimal resolution if possible.

Proposition 2.4. The groups Extn
A (M,N) depend only on M and N , i.e., they are

independent of the choice of projective resolution of M .

Proof. Assume that we have two projective resolutions (P•, ε) and
(
P

′
•, ε

′)
of M :

· · · ∂2 // P1

f1

��

∂1 // P0

f0

��

ε //M //

id

��

0

· · · ∂
′
2 // P

′
1

g1

OO

∂
′
1 // P

′
0

ε
′

//

g0

OO

M

id

OO

// 0

(2.2)

(P•, ε) and
(
P

′
•, ε

′)
are homotopy equivalent by Proposition 2.2 and so there are chain

maps f and g such that f ◦ g = id and g ◦ f = id up to homotopy as in (2.2). The

62

commutative diagram in (2.2) implies that the induced diagram

0 // HomA(M,N) //

id∗

��

HomA (P0, N)

g∗0
��

// HomA (P1, N)

g∗1
��

// · · ·

0 // HomA(M,N) //

id∗

OO

HomA

(
P

′
0, N

)
//

f∗0

OO

HomA

(
P

′
1, N

)f∗1

OO

// · · ·

is also commutative and f ∗ ◦ g∗ = id∗ and g∗ ◦ f ∗ = id∗ up to homotopy. Therefore

by Proposition 2.1 we have an isomorphism of cohomology.

We are not only interested in computing minimal projective resolutions to keep

growth as small as possible, but also because it greatly simplifies our calculations by

not having to worry about coset representatives.

Proposition 2.5. Let (P•, ε) be a projective resolution of a finitely generated A-

module M . Then the following statements are equivalent.

1. (P•, ε) is a minimal projective resolution of M .

2. If S is a simple A-module, then for all n ≥ 0

HomA (Pn, S) = Extn
A (M,S) .

3. If S is a simple A-module, then for every n ≥ 0

∂∗n : Hom (Pn, S) −→ Hom (Pn+1, S)

is the zero map.

Proof. (1) =⇒ (3) Assume that (P•, ε) is a minimal resolution of M and let S be

any simple A-module. Then for any n ≥ 0,

∂n+1 (Pn+1) ⊆ RadPn.

So if we have a map α : Pn → S, then

α∂n+1 (Pn+1) ⊆ RadS = {0} ,

63

as S is simple. Therefore Im ∂∗ (α) = 0 and so (1) implies (3).

(3) =⇒ (1) Assume that every map ∂∗n : Hom (Pn, S) → Hom (Pn+1, S) is the

zero map. Then given a map ϕ : Pn → S it must be true that ∂n+1 (Pn+1) ⊆ Kerϕ.

Therefore ∂n+1 ⊆ RadPn. As this is true for arbitrary n, we have that the resolution

(P•, ε) must be a minimal resolution.

(3) =⇒ (2) If statement (3) is true, then for any simple module S,

Extn
A (M,S) ∼= Ker ∂∗n+1/ Im ∂∗n

∼= HomA (Pn, S) /{0}

∼= HomA (Pn, S) .

Thus (3) implies (2).

(2) =⇒ (3) If we assume (2), then

HomA (Pn, S) = HomA (Pn, S) / {0}

= HomA (Pn, S) /∂∗n (HomA (Pn−1, S))

= Extn
A (M,S) .

Therefore, (2) implies (3).

The next thing we introduce is a multiplication of elements of Extn
A (M,N) and

Extm
A (N,L). We want to be able to multiply extensions to give a ring structure, so

we want a well-defined bilinear, associative map:

Extm
A (N,L)⊗ Extn

A (M,N) −→ Extm+n
A (M,L)

Definition 2.3.2. Let (P•, ε) and
(
Q•, ε

′)
be minimal projective resolutions of simple

modules M and N respectively. Let η ∈ Extm
A (M,N) and ξ ∈ Extn

A(N,L). We have

64

the following commutative diagram:

· · · // Pm+n
//

ιn
��

· · · // Pm
//

ι0
��

η

 B
BB

BB
BB

B
· · · //M // 0

· · · // Qn
//

ξ

��

· · · // Q0
// N // 0

L

where ι0, ..., ιn denote successive liftings of η. Then we define the Yoneda product

of ξ and η as

ξ · η = ξ ◦ ιn.

If η ∈ Extm
A (M,N) and ξ ∈ Extn

A(R,L) and N and R are not isomorphic as A-

modules, then we define ξ · η = 0.

Proposition 2.6. The Yoneda product is a well-defined associative bilinear product.

Proof. See Carlson [Car96, pages 26-38] and [CTVEZ03, pages 61-64].

There are two important questions that we need to ask and answer before we go

about trying to implement the Yoneda product into an algorithm. Do lifts always

exist? If the lifts are not unique, then how do they affect computations in cohomology?

The following proposition answers these two questions.

Proposition 2.7. Suppose that M and N are simple A-modules with corresponding

minimal projective resolutions (P•, ε) and
(
Q•, ε

′)
and that η ∈ Extm

A (M,N). We are

in the following situation:

· · · // Pm+2
∂m+2 // Pm+1

∂m+1 // Pm
∂m //

η

 B
BB

BB
BB

B
· · · // P0

ε //M // 0

· · · // Q2

∂
′
2 // Q1

//
∂
′
1 // Q0

ε
′
// N // 0

(2.3)

65

Then there exists a chain map {ιn}n∈N which lifts η such that the following diagram

commutes:

· · · // Pm+2

ι2
��

∂m+2 // Pm+1

ι1
��

∂m+1 // Pm

ι0
��

∂m //

η

 B
BB

BB
BB

B
· · · // P0

ε //M // 0

· · · // Q2

∂
′
2 // Q1

//
∂
′
1 // Q0

ε
′
// N // 0

(2.4)

Moreover, any two such chain maps ι and ι
′
that lift η are chain homotopic.

Proof. First we note that ι0 exists because ε
′

is onto and Pm is a projective A-

module. By induction we assume that we have constructed ιk : Pm+k → Qk with

ιk−1 ◦ ∂m+k = ∂
′ ◦ ιk for k = 0, ..., n. Then by the induction hypothesis we have

∂
′

n ◦ ιn ◦ ∂m+n+1 = ιn−1 ◦ ∂m+n ◦ ∂m+n+1 = 0.

Thus ιn ◦ ∂m+n+1 : Pm+n+1 → Qn has the property that ∂
′
n ◦ ιn ◦ ∂m+n+1 = 0. Now as

the bottom row is also a projective resolution and thus exact, we have that

ιn ◦ ∂m+n+1 ⊆ ∂
′

n+1 (Qn+1) .

We therefore are in the following situation:

Pm+n+1

��

ιn◦∂m+n+1

&&NNNNNNNNNNN

Qn+1
// // ∂

′
n+1 (Qn+1)

As Pm+n+1 is a projective A-module, we thus have a map ιn+1 : Pm+n+1 → Qn+1 as

desired.

Now we show that any lift will do. Let ι
′

be another chain map lifting η. It is

true that ϕ0 exists in (2.5) by the projectivity of Pm. Assume by induction that for

k = 0, ..., n that there exists ϕk : Pm+k → Qk+1 with ιk− ι
′

k = ∂
′

k+1 ◦ϕk +ϕk−1 ◦∂m+k.

· · · // Pm+2

ι2ι
′
2

��

∂m+2 // Pm+1

ϕ1

����
��

��
��

��
��

�

ι1ι
′
1

��

∂m+1 // Pm

ϕ0

����
��

��
��

��
��

�

ι0ι
′
0

��

∂m //

η

��?
??

??
??

??
??

??
· · · //M // 0

· · · // Q2

∂
′
2 // Q1

//
∂
′
1 // Q0

ε
′

// N // 0

(2.5)

66

Using the induction hypothesis and commutativity of the squares in the diagram we

have that:

∂
′

n+1 ◦
(
ιn+1 − ι

′

n+1 − ϕn ◦ ∂m+n+1

)
= ∂

′

n+1 ◦
(
ιn+1 − ι

′

n+1

)
− ∂

′

n+1 ◦ ϕn ◦ ∂m+n+1

=
(
ιn − ι

′

n

)
◦ ∂m+n+1 − ∂

′

n+1 ◦ ϕn ◦ ∂m+n+1

=
(
∂
′

n+1 ◦ ϕn + ϕn−1 ◦ ∂m+n

)
◦ ∂m+n+1

−∂′n+1 ◦ ϕn ◦ ∂m+n+1

= 0

As
(
Q•, ε

′)
is exact we have that(

ιn+1 − ι
′

n+1 − ϕn∂m+n+1

)
(Pm+n+1) ⊆ ∂

′

n+2 (Qn+2)

and so there exists ϕn+1 : Pm+n+1 → Qn+2 with

ιn+1 − ι
′

n+1 = ∂
′

nϕm+n+1 + ∂m+iϕi−1.

As we take the computational point of view of computing cohomology using pro-

jective resolutions, we must have a concrete way of constructing liftings. We have

proven that lifts exist in Proposition 2.7. We compute the lifts in our program with

the following algorithm.

Algorithm 2.3.1. Lift Homomorphism Between Projective Modules

We are in the following situation: P = ep1A u · · · u epl
A, Q = eq1A u · · · u eqmA,

and R = er1Au · · ·u ernA We have homomorphisms (given as matrices) f : P → Q

(l × m) and d : R → Q (n × m), such that the f(P) ⊆ d(R). We calculate a lift

ι : P → R such that d ◦ ι = f .

Input: P , Q, R (as above), matrices f : P → Q and d : R→ Q.

Output: A homomorphism ι such that d ◦ ι = f given as an l × n matrix M where

each entry Mi,j gives the image of the idempotent epi
in erj

A.

67

1: Initialize: M := 0l×n (zero matrix with entries in k).

2: for i from 1 to l do

3: for j from 1 to n do

4: S := {γ ∈ Basisk (epi
B) : τ(γ) = erj

}

5: N := 0|S|×m

6: for t from 1 to |S| do

7: Nrow t := d (γt)

8: end for

9: v := f (0, ..., 0, epi
, 0, ..., 0) with epi

in the ith position.

10: Find x such that x · N = v

11: Mi,j := x

12: end for

13: end for

14: return M which is our required ι.

Proposition 2.8. The above algorithm 2.3.1 terminates and is correct.

Proof. This is just a straight forward application of linear algebra.

We now define the Ext-algebra.

Definition 2.3.3. Let S1, ..., St be the simple A-modules up to isomorphism. The

Ext-algebra E (A) (also called the Yoneda algebra) of A is:

E (A) = u∞
n=0 ut

i,j=1 Extn
A (Si, Sj)

where the multiplicative structure is given by the Yoneda product. If η ∈ Extn
A (Si, Sj),

we say that the degree of η is n. The algebra E(A) is a graded k-algebra in a natural

way given by the n.

Lemma 2.9. If Ext1
A (S1, S2) = 0, then every extension of S1 by S2 is split.

68

Proof. For a proof see [Wei94, page 77].

Assume that the algebra A is finite dimensional. Then E (A) need not be finite

dimensional, in fact E (A) need not even be Noetherian. However, we shall see that

for a group algebra, we always have finite generation. Let us also mention that the

E (A) is usually not commutative.

Example 2.3.1. Let Λ = kΓ/I where Γ is the quiver

v1

a // v2
b

oo

and let I = 〈aba, bab〉. Let S1 and S2 denote the vertex simple modules and let

P1 = ev1Λ and P2 = ev2Λ denote their projective covers. Let η ∈ Ext1
Λ (S1, S2) and

γ ∈ Ext4
Λ (S2, S2) be nonzero. We compute η · γ and γ · η using projective resolutions.

We have the following commutative diagram:

· · · // P2

id

·a // P1

·b
��

·ab // P1

id

·b // P2
·ba //

·a
��

P2
·a //

id
η

 A
AA

AA
AA

P1
ε // S1

// 0

· · · // P2
·ba //

γ

��

P2
·a // P1

·ab // P1
·b // P2

ε
′
// S2

// 0

S2

where the top and bottom row are minimal projective resolutions of S1 and S2 respec-

tively. The indicated maps are multiplication on the left by the images of the given

arrows in the quotient Λ. More specifically we have that under ·b we have the idem-

potent ev1 ∈ P1 maps to b · ev1 = b, etc. Here we take the identity map for ι4 and

therefore γ · η 6= 0 in Ext5
Λ (S1, S2) as we took γ 6= 0. It is clear from the definition of

the Yoneda product that η · γ = 0 as S1 and S2 are not isomorphic as Λ modules.

Definition 2.3.4. Let kG be a group algebra and let k denote the trivial kG-module.

We define the cohomology ring of the group G as

H∗(G, k) = Ext∗kG(k,k) = u∞
k=0 Extk

kG (k,k) ,

69

a subring of the Ext-algebra of kG.

Proposition 2.10. H∗(G, k) = Ext∗kG (k,k) is a graded commutative ring (i.e. xy =

(−1)deg x·deg yyx) and in the case when char k = 2, we have a commutative ring.

Proof. See Carlson [Car96, page 38].

The cohomology ring for a group has some important properties and interpreta-

tions. By taking the trivial kG-module, it focuses attention on the group G itself,

that is, group cohomology can be used to reflect the internal structure of G such

as its p-rank. If M is a kG-module, the second cohomology group H2(G,M) is in

one-to-one correspondence with the set of equivalence classes of extensions of G by

M up an equivalence relation. Since homology theory is rooted in topology, it can

also be used to study the possible ways a group can act on spaces or other sets with

some structure. An example of the application of computing H∗(G, k) was the proof

(due to P. Smith [Smi44]) that if any finite group acts freely on a sphere then all of

its abelian subgroups must be periodic. The work of D. Quillen, J. Alperin, L. Evens,

J. Carlson, and D. Benson connects the cohomology ring of a finite group with coef-

ficients in a finite field to the structure of modular representations of G. The theory

of this is discussed in Benson [Ben98b, Ben98a].

We do not wish to go further into the interpretations and properties of H∗(G, k).

Our goal is to supply the techniques and programs needed to provide examples to

better understand the theory.

2.4 Computing H∗ (G, k) and E (kG)

When we consider computing the Ext-algebra, we do this on a block by block basis.

Recall that if Pi and Pj are in different blocks, that there are no nontrivial homo-

morphisms between them. Thus for any simple module Si and Sj corresponding to

Pi and Pj in different blocks we have that Extn
kG (Si, Sj) = 0. In our computations

70

and results we provide, we compute the Ext-algebra for the principal block. However,

the techniques that we have provided work for all blocks of a group algebra kG.

As noted before, to compute E (kG) and H∗ (G, k) we would prefer to compute

in a smaller algebra with the same homological properties. The theorem that allows

us to work in a Morita equivalent ring is the following.

Theorem 2.11. Assume that for two finite dimensional algebras A and B we have

that A is Morita equivalent to B given by the functors F : A → B and G : B → A.

Let Si and S ′i denote the respective simple modules. Then

u∞
n=0 ui,j Extn

A (Si, Sj) ∼= u∞
n=0 ui,j Extn

B

(
S
′

i , S
′

j

)
as algebras.

Proof. Let S1, ..., Sr be the simple A-modules with corresponding projective covers

P1, ..., Pr by Theorem 1.25 on page 41. Then by Lemma 1.31 on page 49 we know that

F (S1) , ..., F (Sr) and F (P1) , ..., F (Pr) are the simples and corresponding PIMs for

B. Let (P•, ε) be a minimal projective resolution for a simple Si. Then we know that

(F (P•) , F (ε)) is a projective resolution for F (Si). As (P•, ε) is minimal we know

that Im ∂n ⊆ RadPn−1 and so F (Im ∂n) ⊆ F (RadPn−1) = RadF (Pn−1). Thus

(F (P•) , F (ε)) is a minimal projective resolution. Consider any η ∈ Extn
A (Si, Sj).

By Proposition 2.5 on page 62 we know that η ∈ HomA

(
P

′
n, Sj

)
. But by Proposition

1.33 on page 51 we have that

HomA

(
P

′

n, Sj

)
∼= HomB

(
F
(
P

′

n

)
, F (Sj)

)
.

A further investigation shows the multiplicative structure is also compatible. There-

fore as this is true for all simples Si and all n, we have isomorphic Ext-algebras.

For a complete proof see McCarthy [McC88, pages 211-215].

Our ultimate goal is to compute the Ext-algebra and cohomology ring for a group

algebra kG. Theorem 2.11 allows us to make this calculation easier by working in

71

the Morita equivalent basic algebra B. We shall denote the image of the trivial kG-

module k under the Morita equivalence F (with inverse G) by F (k) := kB. Therefore

as E(kG) ∼= E(B) and H∗(G, k) = Ext∗kG (k,k) ∼= Ext∗B (kB,kB), we have designed

and implemented our algorithm to work for basic algebras.

The first step in computing the Ext-algebra for a basic algebra B is to compute

the projective resolutions of the simple B-modules S1, ..., St to a given degree n. After

computing the projective resolutions we will have determined the k-dimensions of the

vector spaces Extk
B (Si, Sj), 1 ≤ k ≤ n. But we also want the multiplicative structure.

We determine the multiplicative structure by first finding a minimal set of gener-

ators for un
k=0 ut

i,j=1 Extk
B (Si, Sj) and then determining all possible products in these

generators up to degree n.

Let Bi,j,k be a basis for the k-vector space Extk
B (Sj, Sj) and BYon

i,j,k a basis for

the corresponding zero-dimensional subspace of Extk
B (Si, Sj) for 1 ≤ k ≤ n and

i, j = 1, ..., t. We compute a minimal generating set as follows. Let G := ∅ be

our set of generators. Let m > 0 be the smallest integer such that there are i0

and j0 such that dimk Extm
B (Si0 , Sj0) = r > 0. Let ηi0,j0,m1 , ..., ηi0,j0,mr ∈ Bi0,j0,m.

For ηi0,j0,m1 , ..., ηi0,j0,mr ∈ Bi0,j0,m, if ηi0,j0,ml
6∈ SpanBYon

i0,j0,m then add ηi0,j0,ml
to the

generating set G and also to BYon
i0,j0,m. We then lift each of the ηi0,j0,ml

for l = 1, ..., r

as in Figure 2.1:

· · · // Pn
∂n //

ιn−ml

��

· · · // Pm+2
∂m+2//

ι2

��

Pm+1
∂m+1 //

ι1

��

Pm
//

ι0

��

ηi0,j0,ml

��?
??

??
??

??
· · · ε // Si0

// 0

· · · // P
′
n−r

∂
′
n−r //

ηj0,k,n−ml

��

· · · // P
′
2

∂
′
2 //

ηj0,k,2

��

P
′
1

ηj0,k,1

��

∂
′
1 // P

′
0

ε
′
// Sj0

// 0

Sk Sk Sk

Figure 2.1. Standard Lifting of a Generator

72

In Figure 2.1 we have ηj0,k,s ◦ ηi0,j0,ml
= ηj0,k,s ◦ ιs for 1 ≤ s ≤ n − r. We compute

ηj0,k,s ◦ ηi0,j0,ml
for all ηj0,k,s ∈ Bj0,k,s and all k = 1, ..., t. We then add all of these

products ηj0,k,s ◦ ηi0,j0,m to BYon
i0,k,s+m.

We then proceed to the next i1, j1 such that dimk Extm
B (Si1 , Sj1) > 0. We consider

all ηi1,j1,m ∈ Bi1,j1,m such that ηi1,j1,m 6∈ SpanBY on
i1,j1,m. We then repeat the above lifting

procedure. We do this for all iα and jβ in degree m. We then proceed to degree m+1

and repeat until we eventually get to degree n.

We now make the above description into an algorithm that we implement into

GAP. The algorithm finds a minimal generating set for the Ext-algebra E(B) up to

degree n, i.e. a generating set for un
k=0 ui,j Extk

B (Si, Sj).

Algorithm 2.4.1. Compute Minimal Generators

Input: A basic algebra B and desired degree of computation n.

Output: Minimal set of generators of Ext-algebra to degree n, un
k=0ui,jExtk

B (Si, Sj).

1: Initialize the generators, G := ∅.

2: N := Number of Simple B-modules, Si.

3: for i from 1 to N do

4: Compute minimal projective resolution for Si to degree n using Algorithm 2.2.1.

5: end for

6: Initialize BYon
i,j,k := ∅, 1 ≤ i, j ≤ N , 1 ≤ k ≤ n, the basis for the space of Yoneda

products of the generators and Basisk
(
Extk

B (Si, Sj)
)

:= Bi,j,k.

7: Di,j,k := dimk Extk
B (Si, Sj), 1 ≤ i, j ≤ N , 1 ≤ k ≤ n.

8: for k from 1 to n do

9: for i from 1 to N do

10: for j from 1 to N do

11: if Di,j,k 6= 0 then

12: for η ∈ Bi,j,k do

13: if η /∈ Spank
(
BYon

i,j,k

)
then

73

14: Add η to G

15: Add η to BYon
i,j,k

16: for m from 1 to n− k do

17: Compute lift ιm for η with projective resolutions of Si and Sj

using Algorithm 2.3.1 as in Figure 2.1.

18: for r from 1 to N do

19: for γ ∈ Bj,r,m do

20: Compute γ · ιm
21: if γ · ιm 6∈ Spank BYon

i,r,m+k then

22: Add γ · ιm to BYon
i,r,m+k

23: end if

24: end for

25: end for

26: end for

27: end if

28: end for

29: end if

30: end for

31: end for

32: end for

33: return Generators G for E(B).

Proposition 2.12. Algorithm 2.4.1 produces a minimal generating set for un
k=0 ui,j

Extk
B (Si, Sj).

Proof. It is clear from the construction that we produce a generating set. What we

must prove is that we have found a minimal generating set. We proceed by induction

on the degree k. It is clear that we have a minimal generating set up to k = 1 as there

is no way to write a generator in degree 1 as the product of two other positive degree

74

generators. Now assume that we have a minimal generating set for k = 1, ..., n − 1.

Assume that η ∈ Extn
B (Si, Sj) is a generator that we have found of degree n. Then we

know by construction that η cannot be written as a linear combination of generators

and basis elements of lower degree. Therefore η is a necessary generator and is part

of the minimal set.

Now that we have a minimal generating set for un
k=0 ui,j Extk

B (Si, Sj), we would

like to rewrite the basis for un
k=0ui,jExtk

B (Si, Sj) in terms of the generators {η1, ..., ηr}.

This will then allow us to easily find the ideal of relations satisfied by the generators for

the algebra and also compute a Gröbner basis G for the ideal of generators relations

such that un
k=0 ui,j Extk

B (Si, Sj) ∼= k〈η1, ..., ηr〉/〈G〉. We describe the process of

rewriting the basis in the following algorithm.

Algorithm 2.4.2. Spinning

Assume that the k-algebra E(B) up to degree n is given by generators {η1, ..., ηr} and

that the graded vector space is given as V = un
k=0 ui,j Ext

k
B (Si, Sj).

Input: Algebra generators {η1, ..., ηr} of E(B) ordered by degree.

Output: A graded k-basis B for V given as products in the generators {η1, ..., ηr}.

1: Initialize B = {η1, ..., ηr}

2: for k from 1 to degree n of computation do

3: for b ∈ B do

4: for i from 1 to r do

5: v := ηi · b (Yoneda Product)

6: if degree v = k then

7: if v /∈ Spank B then

8: Append v to the end of the list B

9: end if

10: end if

11: end for

75

12: end for

13: end for

14: return B

Lemma 2.13. The above algorithm terminates and is correct.

Proof. Algorithm 2.4.2 terminates since we are only considering the basis up to a

finite n. By construction B is linearly independent over k, B ⊆ E(B), and {η1, ..., ηr}

is a generating set.

We now have a new basis for the Ext-algebra as a graded k-vector space and we

also have a record of each of the products in the generators. The next step is to see

what relations we have between the generators and would like to describe the ideal I

of these relations in the form of a Gröbner basis.

Algorithm 2.4.3. Compute Gröbner Basis for Relations of E(B)

We wish to compute the relations in the generators for E(B) and present them as a

Gröbner basis G.

Input: The generators of the Ext-algebra E(B) up to a given degree n.

Output: A Gröbner basis for the relations ideal of E(A).

1: Rewrite Basis in terms of Generators using Spinning Algorithm 2.4.2

2: Compute Relations G by using Alternative Gröbner Basis Algorithm 3.1.3 in chap-

ter 3.

3: return G

For an expository description of the implementation of the computation of the

Ext-algebra including technical remarks and examples, see Chapter 4.

2.4.1 The Quiver of B and E (B)

Definition 2.4.1. Let Si
∼= eiB/ei Rad(B) for i = 1, ..., r, be representatives for the

isomorphism classes of simple A-modules. The Ext-quiver of B, Q(B), is the quiver

76

with vertices xi corresponding to Si, and dimk Ext1
B (Si, Sj) arrows from xi to xj.

Lemma 2.14. Let u, v be vertices in a special quiver with relations (Γ, I). Let Λ =

kΓ/I. Then dimk Ext1
Λ (Sv, Su) is equal to the number of arrows from v to u in Γ.

Proof. Denote by Γv
1 the set of arrows in Γ with origin v. For a ∈ Γv

1, left multipli-

cation by a is a homomorphism τ(a)Λ → vΛ. This gives rise to the exact sequence

⊕a∈Γv
1
τ(a)Λ

∂1−→ evΛ −→ Sv −→ 0, (2.6)

with Im(∂1) = Rad(evΛ). So (2.6) is the start of a projective resolution of Sv, minimal

at degree 0. Since I ⊆ J2, it follows that Ker (∂1) ⊆ Rad (
⊕

a τ(a)Λ), and so the

resolution is also minimal at degree 1. The degree 1 projective indecomposable module

P in the minimal resolution therefore has P/RadP =
⊕

a∈Γv
1
Sτ(a). Thus the result

follows.

The basic algebra B that we are given can be constructed as a path algebra modulo

an ideal of relations. We can visually picture this via its Ext-quiver. In the Ext-quiver

we know that the vertices are the idempotents in the algebra corresponding to the

simple modules Si and the arrows from Si to Sj represent elements in Ext1
B (Si, Sj).

We now define a way to give a pictorial description of E(B).

Definition 2.4.2. Let E(B) be the Ext-algebra of a finite dimensional algebra B.

We define the quiver of E(B) denoted Q(E(B)) as follows: We make a vertex vi to

represent each of the spaces Ext0
A (Si, Si). We then make arrows from vertex vi to vj

for each generator ηi,j,k ∈ Extk
A (Si, Sj).

We note that we are able to read off the Ext-quiver of B from the quiver of E(B)

by keeping the vertices and the degree 1 arrows. The quiver Q(E(B)) for E(B)

therefore contains Q(B) as a subquiver and we can get Q(E(B)) from Q(B) just by

drawing more arrows. We denote the arrows in Q(E(B)) from Si to Sj denoted by

ηi,j,k where k is the degree of the generator.

77

Example 2.4.1. We recall that the Ext-quiver for F2S4 is:

1a55
//
2aoo ii

The quiver for the Ext-algebra E (F2S4) is given in Figure 2.2.

1aη1,1,1 55

η1,1,2

��
η1,2,1 //

2a
η2,1,1oo η2,2,1ii

Figure 2.2. Quiver of Ext-algebra of F2S4

2.5 Finite Generation of H∗ (G, k) and E (kG)

In the case of a group algebra kG we know that both the cohomology ring and Ext-

algebra are infinite dimensional graded vector spaces. Evens has shown that the

cohomology ring and the Ext-algebra are finitely generated as k-algebras. Therefore,

one goal is to describe this noncommutative infinite dimensional algebra in terms of

a finite set of generators and the relations satisfied by the generators.

Theorem 2.15. (Evens,Venkov) If G is a finite group then the cohomology ring

H∗ (G, k) is a finitely generated k-algebra.

Proof. The proof can be found in Evens [Eve61].

Corollary 2.16. The Ext-algebra E (kG) is finitely generated as a k-algebra.

Proof. See Benson [Ben98b, page 127]

An essential question in the course of a computer calculation of the cohomology

ring and Ext-algebra concerns what degrees a minimal set of generators and relations

should lie in. For the computer calculations in the appendix, the projective resolutions

of the simple kG-modules are only computed out to 20 degrees and for the Ext-algebra

we have computed many only up to n = 12 or less. It is a problem to know exactly

78

when we have found all of the generators and relations to determine a presentation

of the Ext-algebra or cohomology ring. Carlson has a technique for cohomology that

relies on restrictions to subgroups to find if he has found enough generators and

relations [Car01, CTVEZ03]. The technique uses restrictions of the group to certain

subgroups and he is able to prove that he has found enough generators by using this

technique. However, in our case, what we have gained in computational power for

large groups by passing to the basic algebra, we have lost in terms of group structure

information.

79

Chapter 3

Noncommutative Gröbner Bases

Thus far we have provided a way of constructing a projective resolution that relies only

on techniques from linear algebra. An alternate approach to computing projective

resolutions will use Gröbner basis theory. We wish to develop a theory for Gröbner

bases over path algebras, which are generally noncommutative algebras. The reason

we use this approach is motivated by the following theorem.

Theorem 3.1. (Gabriel) Suppose B is a finite dimensional basic algebra over a split-

ting field k and let Γ = Q(B) be its Ext-quiver. Then there is a k-algebra epimorphism

Φ : kΓ � B where the kernel of Φ is contained in the ideal generated by the paths of

length 2.

Proof. For a proof see Benson [Ben98a, page 103].

3.1 Noncommutative Gröbner Bases

For computational purposes, we do not work in the group algebra kG. Instead we

prefer the Morita equivalent basic algebra B. From Theorem 3.1 we know there is

an ideal I = Kerφ such that B ∼= kΓ/I. To study the quotient algebra kΓ/I, we

would like to have a good method for working with the equivalence classes of the form

f + I. This means we have to be able to compute the normal form for elements of

equivalence classes efficiently. This is where the concept of a Gröbner basis appears.

A Gröbner basis, moreover, provides a way of computing projective resolutions which

originates in [AG87] and [FGKK93]. First we present the concept of a Gröbner basis

80

in a noncommutative setting. Then we discuss the more specific setting of a finite

dimensional algebra B ∼= kΓ/I.

Let k be an arbitrary field and A an arbitrary k-algebra with B a k-basis of A. For

example we may consider the k-algebra with basis B consisting of all monomials in the

indeterminates x1, ..., xn. In other words, we could consider the ring of polynomials

k 〈x1, ..., xn〉 in noncommutative indeterminates, i.e. xixj 6= xjxi for i 6= j. We will

be considering the (two-sided) ideals in A. A good introduction to Gröbner basis

theory in the commutative setting can be found in [Frö97, CLO97].

Definition 3.1.1. A basis B for a k-algebra A is said to be a multiplicative basis

if for all bi, bj ∈ B we have bi · bj ∈ B or bi · bj = 0.

Definition 3.1.2. Given a basis B, we say that > is a well-order on B if > is a

total-order such that every nonempty subset of B has a smallest element.

Definition 3.1.3. Let B be a basis for a k-algebra A. We say that > is an admissible

order on a multiplicative basis B if > is a well order and for all p, q, r, s ∈ B we have

1. p < q =⇒ spr < sqr if both spr 6= 0 and sqr 6= 0.

2. p = qr =⇒ p > q and p > r.

Example 3.1.1. Consider the Ext-quiver Γ for the basic algebra B ∼=Morita kS4 over

F2. The two vertices are labeled 1a and 2a and there are four arrows, a,b,c, and d.

There are two simple S4 modules which are represented by the vertices 1a and 2a.

The Ext-quiver is given in Figure 3.1 We give an admissible order on the basis of the

path algebra F2Γ as follows:

v1 < v2 < a < b < c < d < aa < ac < ba < bc < cb < cd < db < dd < · · · (3.1)

The ordering that we will use throughout this dissertation is the admissible order

commonly referred to as the length-lexicographic ordering. We define this ordering

as follows.

81

1aa
)) c //

2a
b

oo d
uu

Figure 3.1. Ext-Quiver of Basic Algebra of F2S4

Definition 3.1.4. Let kΓ be a path algebra with multiplicative basis B. Pick a total

ordering on the set of arrows and vertices in the quiver Γ. The length-lexicographic

ordering on B is then defined as follows: b1 ≤ b2 if

1. length(b1) < length(b2), or

2. length(b1) = length(b2) and b1 ≤ b2 lexicographically.

Example 3.1.2. Take the polynomial ring k[x, y] in two indeterminates with x >

y ordered length-lexicographically. Then x4y3 > x3y4 and xy3 < y5. Also, 3.1 in

example 3.1.1 is an example of the length-lexicographic order.

Definition 3.1.5. Let x =
∑

i∈I αibi, where αi ∈ k, bi ∈ B and only finitely many of

the αi are nonzero. We say that bi is in the support of x if αi 6= 0. Denote this by

supp(x).

The notion of a largest basis element is necessary so we can define a leading term.

Thus we define the Tip of an element x ∈ A as follows (in the commutative case that

most people are familiar with, Tip is often called leading term or head term).

Definition 3.1.6. If B = {bi}i∈I is a basis of our k-algebra A and > is a well-order

on B, then if x =
∑

i∈I αibi is a nonzero element of A, we say bi is the tip of x if bi

is in the support of x and bi ≥ bj for all bj in the support of x. We will denote this

by Tip (x). We denote the coefficient of a tip as CTip(x).

Definition 3.1.7. If X is a subset of A with basis B we let

Tip (X) = {b ∈ B : b = Tip (x) for some nonzero x ∈ X} .

82

We use NonTip(X) to denote the set B\Tip(X). So both Tip(X) and NonTip(X)

are subsets of our fixed basis B. Both sets are dependent on the choice of admissible-

order on B.

So whenever we write down Tip(X) or NonTip(X) it is assumed that this includes

an admissible order >. For the rest of the thesis, we fix the admissible order > as the

length-lexicographic ordering.

Lemma 3.2. Given an ideal I in a path algebra kΓ, the following are properties of

NonTip (I).

1. The cosets {f + I : f ∈ NonTip(I)} form a k-basis for Λ = kΓ/I.

2. Each coset of I in kΓ contains exactly one member of the span of NonTip(I).

3. The coset representative is the unique element of the coset with the smallest

support.

Proof. For a proof see D. Green [Gre97, page 20]

Definition 3.1.8. For f ∈ kΓ, denote by NI (f) the unique smallest support element

of the coset f + I. This is the standard coset representative of f + I. The

previous lemma 3.2 ensures that this definition makes sense, and that NI (f) is also

the unique element of f + I in the k-span of NonTip (I).

The tip and nontip sets give us a way to decompose an algebra as follows:

Theorem 3.3. Let A be a k-algebra with basis B. Let > be a well-order on B. Suppose

that I is an ideal in A . Then A = I ⊕ Spank (NonTip (I)), as k-vector spaces.

Proof. A proof is found in [Gre99].

83

Every nonzero x ∈ A can be written uniquely as ix + N (x), where ix ∈ I and

N (x) ∈ Span(NonTip(I)). We call N (x) the normal form of x.

Now we define a Gröbner basis G for an ideal I in A, a k-algebra with multiplicative

basis B and admissible order >.

Definition 3.1.9. We say that a set G ⊆ I is a Gröbner basis for I with respect

to an admissible ordering > if 〈Tip (G)〉 = 〈Tip (I)〉, the ideal generated by the tips

of G is the same as the ideal generated by the tips of the ideal I.

Gröbner bases can also be thought of in terms of division. We first define what

we mean by division in a noncommutative setting.

Definition 3.1.10. Given x, y ∈ A with basis B, we say that x divides y, denoted

x | y, if there exist p, q ∈ B such that pxq = y.

We now can state a proposition that gives another interpretation of Gröbner bases

in terms of division.

Proposition 3.4. Let I be an ideal in a k-algebra A. Given an admissible ordering

>, if for every b ∈ Tip (I) there is some g ∈ G such that Tip (g) divides b then G is

a Gröbner basis for I.

Proof. Assume that 〈Tip (G)〉 = 〈Tip (I)〉. Let b ∈ Tip (I). Therefore b ∈ 〈Tip (I)〉

and thus b ∈ 〈Tip (G)〉. So b = r1g1s1 + · · · + rngnsn with gi ∈ G and ri, si ∈ R.

But b is a basis element and thus is monomial. Thus ri = 0 for all but one i.

Without loss of generality, let r1, s1 6= 0. Then as we have a multiplicative basis,

r1 and s1 ∈ B. Conversely, assume for every b ∈ Tip (I) there is some g ∈ G such

that Tip (g) divides b. Let g ∈ 〈Tip (G)〉, g = r1 Tip (g1) s1 + · · · + rn Tip (gn) sn =

r1p1g1q1s1 + · · · + rnpngnqnsn and is thus in 〈Tip (I)〉. Now let t ∈ 〈Tip (I)〉. Then

t = r1b1s1 + · · ·+rnbnsn where bi are basis elements in Tip (I). Then t = r1p1b1q1s1 +

· · ·+ rnpnbnqnsn and as each pibiqi = gi ∈ G, then we have 〈Tip (I)〉 ⊆ 〈Tip (G)〉 and

thus we have shown that 〈Tip (I)〉 = 〈Tip (G)〉.

84

An important fact about Gröbner bases to notice is that if a set G is a Gröbner

basis for an ideal I then G generates I.

Lemma 3.5. If G is a Gröbner basis for an ideal I then G generates I.

Proof. By contradiction, suppose that G does not generate I. Let x ∈ I\ 〈G〉 be

such that Tip(x) is as small as possible (in the ordering). Then, since G is a Gröbner

basis for I, there is some g ∈ G such that Tip (g) |Tip (x). Thus Tip(x) = bTip(g)c

for some b, c ∈ B. If α is the coefficient of Tip(x) in x then consider y = x − αbgc.

By construction, Tip(y) < Tip(x) and y ∈ I\ 〈G〉. This contradicts the choice of x

and we have shown that G generates I.

As in the commutative case, the division of an element y ∈ A by an ordered set

of elements X = {f1, ..., fn} of A is important. We need to emphasize that the order

of the elements affects the outcome of the division algorithm. There is a division

algorithm in the noncommutative setting as in the commutative setting.

Algorithm 3.1.1. Division Algorithm

Input: An ordered set of polynomials X = {f1, ..., fn} in A, a polynomial y ∈ A,

and an admissible order >.

Output: The remainder r of the division of y by the set X.

1: Initialize: m1 := 0, ...,mn := 0, r := 0, z := y, DIVOCCUR:=False

2: while z 6= 0 and DIVOCCUR==False do

3: for i from 1 to n do

4: if Tip(z) = uTip (fi) v for u, v ∈ B then

5: mi := mi + 1

6: ui,mi
:= [CTip(z)/CTip (xi)]u (left most division)

7: vi,mi
:= v

8: z := z − [CTip(z)/CTip (xi)ufiv]

9: DIVOCCUR:=True

85

10: else

11: i := i+ 1

12: end if

13: if DIVOCCUR==False then

14: r := r + CTip(z) Tip(z)

15: z := z − CTip(z) Tip(z)

16: end if

17: end for

18: end while

19: return r

Proposition 3.6. Algorithm 3.1.1 terminates and is correct.

Proof. For a proof see Green [Gre99].

Example 3.1.3. Take the noncommutative polynomial ring k 〈x, y, z〉 over a field k.

Let B be the set of monomials and > the length-lexicographic ordering with x > y > z.

We divide zxxyx by f1 = xy − x and f2 = xx − xz. Note that Tip (f1) = xy and

Tip (f2) = xx. Beginning the algorithm, we see that zxxyx = (zx) Tip (f1)x. Thus

u1,1 = zx and v1,1 = x. We then replace zxxyx by zxxyx − zx (f1)x = zxxx. Now

Tip (f1) does not divide zxxx. We now consider Tip (f2) and see it divides zxxx

and so we proceed. There are two ways to divide zxxx by xx and for the algorithm

to be precise we must choose one. Say we choose the “left most” division. Then

zxxx = zx (Tip (f2)) and let u2,1 = zx and v2,1 = 1 and replace zxxx by zxxz. Once

again we divide by Tip (f2) and we see that zxxz = zTip (f2) z and so u 2,2 = z and

v2,2 = z. We replace zxxz by zxzz and the algorithm terminates with r = zxzz. So

we have

zxxyx = (zx) f1x+ zxf2 + zf2z + zxzz.

86

If we change the order of f1 and f2 we get a different outcome:

zxxyx = z (f2) yx+ zxzyx.

Definition 3.1.11. If X = {x1, ..., xn} ⊆ A (as an ordered set) and y ∈ A is divided

by the set X, we denote the remainder, r, of the division of y by X as y ⇒X r.

We note that if we divide by a set the outcome is not unique. It depends on the

order in which we do the division. However, if we have a Gröbner basis, the outcome

of the division algorithm is unique as the next proposition demonstrates.

Proposition 3.7. Let G be a Gröbner basis for an ideal I ∈ A. Let y ∈ A and con-

sider X = {g1, ..., gn} = {g ∈ G : Tip (g) ≤ Tip (y)}. If y ⇒X r, then r is independent

of the order of g1, ..., gn and thus r = N (y) is the normal form of y.

Proof. For a proof of this proposition see Green [Gre99].

3.1.1 Computational Uses of Gröbner Bases

To study a quotient algebra kΓ/I, a Gröbner basis provides a good method for working

with the equivalence classes f + I. The information we gain if we have a Gröbner

basis is summarized by the following proposition.

Proposition 3.8. Let A be a k-algebra with multiplicative basis B and admissible

order > on B. Let I be an ideal in A with G a Gröbner basis for I. Let f ⇒G r with

r = N (f) the normal form of f . Then the following statements hold:

1. f + I = g + I if and only if N (f) = N (g).

2. f + I = N (f) + I.

3. The map σ : A/I → A with σ (f + I) = N (f), is a vector space splitting to the

canonical surjection A→ A/I.

87

4. σ is an k-linear isomorphism between A/I and Span (NonTip (I)).

5. Identifying A/I with Span (NonTip (I)), then NonTip(I) is an k-basis of A/I

contained in B.

In general, Gröbner bases are used to perform calculations in an abstract finitely-

presented algebra. So the construction of a Gröbner basis in our case may seem

redundant. But the work of D. Anick, E. Green and others uses Gröbner bases to

algorithmically construct projective resolutions of finitely presented kΓ/I-modules.

These results can be found in [Gre99], [AG87], [FGKK93], and a new method is

found in [GSZ01].

3.1.2 Alternative Gröbner Basis Algorithm

The standard way of constructing a Gröbner basis for a generating set G is using

the concept of an S-polynomial generalized to a noncommutative ring. There is a

termination theorem which states that under certain conditions, if all S-polynomials

reduce to zero, G is a Gröbner basis for I = 〈G〉. The standard algorithm to compute

a Gröbner basis is called the Buchberger algorithm (see [Gre99]). However, in the

noncommutative setting our ring may not be Noetherian. So for a general k-algebra

we are not guaranteed a finite Gröbner basis.

In our case, the basic algebra B is a finite dimensional algebra. Fortunately, the

following proposition gives a sufficient condition to have a finite Gröbner basis that

relies only upon the finite dimensionality of the quotient.

Proposition 3.9. Let A be a finitely generated k-algebra with multiplicative basis and

order >. Suppose that I is an ideal such that dimk (A/I) is finite. Then I has a finite

Gröbner basis with respect to >.

Proof. For a proof of this proposition see [Gre99].

88

In the setting of this dissertation we are working with a finite dimensional basic

algebra B. Therefore we are in a much better situation for computing Gröbner bases

than for an arbitrary k-algebra. Recall that the generators for a path algebra are

the vertices (idempotents) and the arrows. The basic algebra that we work with

is presented via a basis consisting of monomials in the generators. As we know

the idempotents, we also know the PIMs. In addition, we know the action of the

generators on this special basis. More specifically, we are given matrices for the

action of the generators on the basis. Therefore, it would be redundant to use the

Buchberger algorithm to construct our Gröbner basis. In our case we can do much

better than the Buchberger algorithm.

Definition 3.1.12. The set of minimal tips of I is:

MinTip = {x ∈ Tip(I) : the only y ∈ Tip(I) dividing x is x itself}.

For x ∈ kΓ, recall that NI(x) denotes the unique smallest support element of

the coset f + I as in lemma 3.2 and definition 3.1.8. This is the standard coset

representative of f + I. The following definition makes sense due to the properties of

NonTip(I) in lemma 3.2.

Definition 3.1.13. An element g ∈ I is sharp if it is of the form x − NI (x) for

some x ∈ Tip (I). The set of minimal sharp elements is

MinSharp := {x−NI (x) : x ∈ MinTip (I)} .

The first thing we will need for our Gröbner basis algorithm is a way to compute

NI (f) for f ∈ NonTip(B).

Algorithm 3.1.2. Compute NI(f) Given a polynomial f ∈ Tip(I) in a basic B =

kΓ/I, we wish to compute the unique element of the coset f + I with smallest sup-

port.

89

Input: f ∈ MinTip(I) for a basic algebra B = kΓ/I with a basis B consisting of

monomials in the generators Gen = {v1, ..., vm, a1, ..., an} of B and matrices Mg

for the action of the generators on B.

Output: NI (f)

1: Pick x ∈ NonTip(I) such that there is a g ∈ Gen such that f = g · x.

2: Compute y := Mg · x.

3: NI (f) := y, a linear combination of bi ∈ B.

4: return NI (f)

Lemma 3.10. Algorithm 3.1.2 is correct and terminates.

Proof. This follows from Lemma 3.2 and the fact that we are given a special basis.

We now present an alternative to the standard Buchberger algorithm for comput-

ing a Gröbner basis in our specific setting. In the algorithm below we let B be the

basis for our path algebra kΓ and BB the basis for our basic algebra B.

Algorithm 3.1.3. Alternative Gröbner Basis Algorithm

Input: Basic Algebra B = kΓ/I with basis BB ordered length lexicographically.

Output: Reduced Gröbner basis G.

1: NonTip(I) := BB

2: MinTip(I) := ∅

3: MinSharp(I) := ∅

4: for all paths x in NonTip(I) (taken in the given ordering) do

5: for all generators g of kΓ with τ (x) = o (g) (paths are compatible) do

6: y := x · g (this is a basis element of kΓ)

7: if y /∈ NonTip(I) then

8: y is a tip

9: if y not divisible by any element of MinTip(I) then

90

10: Add y to MinTip(I)

11: Compute NI (y), i.e. express y as linear combination of tips using Algo-

rithm 3.1.2.

12: Add y −NI (y) to MinSharp(I).

13: end if

14: else

15: y is a NonTip(I) as it is already in our basis

16: end if

17: end for

18: end for

19: return G := MinSharp(I), a Gröbner Basis I.

Proposition 3.11. The above algorithm 3.1.3 terminates and gives a Gröbner basis

G.

Proof. As the basic algebra is finite dimensional and the path algebra is finitely

generated, the algorithm clearly terminates after finitely many steps. Let t ∈ Tip(I).

We know that t is divisible by a minimal tip. By construction we know there is a g in

G such that Tip (g) divides t. So by Proposition 3.4, G is a Gröbner basis for I.

3.2 Anick-Green and Minimal Resolutions

Let (Γ, I) be a special quiver with relations. Recall that the justification of this

definition is that the quiver encodes a lot of information about the representation

theory of the finite-dimensional k-algebra Λ = kΓ/I. In particular, the simple Λ-

modules are just the vertex simples Sv, one for each vertex v of Γ which corresponds

to a projective indecomposable module evΛ. Recall also that the first terms of the

minimal projective resolution for Sv can be determined using quiver information. This

partial resolution can be extended to a (not necessarily minimal) projective resolution,

91

using our knowledge about the quiver and the relations. When computing a Gröbner

basis, one often refers to computing overlaps or in the commutative case it is usually

referred to as S-polynomials. We will generalize this notion to higher overlap sets and

then use these sets as indices in our projective resolution. For the remainder of the

chapter, we combine the ideas of E.Green [Gre94] and D. Green [Gre97].

3.2.1 Overlap sets

Definition 3.2.1. Define Γ0 to be the set of vertices in Γ, and Γ1 to be the set of

arrows. Define Γ2 to be MinTip (I). For n ≥ 3, define Γn to be the set of paths γ ∈ B

such that

1. γ has a factorization γ = γ1γ2 with γ1 ∈ Γn−1, γ2 ∈ NonTip (I) and γ2 has

positive length.

2. For every factorization γ = γ1γ2 with γ1 ∈ Γn−1, and for every factorization

γ1 = β1β2 with β1 ∈ Γn−2, we have β2γ2 ∈ Tip (I).

3. No proper left factor of γ satisfies both 1. and 2.

For implementation purposes later, we give an algorithm to compute the overlap

sets. The idea is to not only keep track of a word γ in Γn, but also to keep track

of the word that it came from in Γn−1. Then we check to see if there is any overlap

between the part of the word γ that is the portion of the word in Γn but not in Γn−1.

For example if we have a word abbbc in Γ4 that came from the word abb ∈ Γ3, then

we look for all words in Γ2 that begin with bc. Then we only keep the largest possible

overlaps; that is if a word φ ∈ Γn divides another word σ ∈ Γn, we throw out σ.

We will refer to the previous word in γ from the previous level of Γ as prev (γ). We

also assume that each word γ is a product of arrows ai1 · · · air . We denote the set of

prev (γP) ∈ Γn as prev (Γn).

92

Algorithm 3.2.1. Higher Overlaps

Input: The level of computation desired n, the basic algebra B = kΓ/I and basis BB.

Output: Higher overlaps Γ1,Γ2, ...,Γn

1: Initialize: Γ1 := {arrows}, Γ2 := MinTip (), prev (Γ2) := ∅,Γm = prev (Γm) := ∅

for 3 ≤ m ≤ n;

2: for γ ∈ Γ2 do

3: prev (γ):=ai1 · · · air−1

4: Add prev (γ) to prev (Γ)

5: end for

6: for i from 3 to n do

7: for γ ∈ Γi−1 do

8: for φ ∈ MinTip(I) do

9: if φ = prev (γ) · x, for some path x ∈ BB then

10: Add γφ to Γi

11: Add γ to prev (Γi)

12: end if

13: end for

14: end for

15: Reduce Γi (respectively prev (Γi)), i.e. remove all words γ ∈ Γi such that there

is some φ ∈ Γi with φ 6= γ such that φ | γ.

16: end for

17: return Γ1, ...,Γn

Example 3.2.1. Recall from Figure 3.1 in example 3.1.1 that the Ext-quiver for

B ∼=Morita F2S4 has two vertices. It also has four arrows. Thus by definition we have

that:

Γ1 = {a, b, c, d}

93

Then Γ2 is found by looking at the set MinTip(I)

Γ2 = {aa, cd, db, dd, cba, cbc, bac, bcb}

Then we use algorithm 3.2.1 to compute Γ3:

Γ3 =

{
aaa, cdb, cdd, dbac, dbcb, ddb, ddd, cbaa, cbac
cbcb, cbcd, bacd, bacba, bacbc, bcba, bcbc

}
3.2.2 The Start of the Resolution

We first look at the construction of the Anick-Green resolution before we discuss the

computation of a minimal projective resolution.

Let v be a vertex of Γ with corresponding idempotent ev. As we saw in lemma 1.35,

the vertex simple module Sv has projective cover evΛ, the epimorphism evΛ � Sv

having kernel generated by the arrows a with origin v. That is, the sequence⊕
a∈Γ1

eτ(a)Λ
∂1−→
⊕
v∈Γ0

evΛ
ε−→
⊕
v∈Γ0

Sv −→ 0

is exact, where

∂1

(
eτ(a)λ

)
= eo(a)aλ,

and ε is the sum of the projective covers of the simple module Sv. We describe the

maps just by noting the images of the idempotents.

There is a k-homomorphism s0 : Im (∂1) →
⊕

a∈Γ1
eτ(a)Λ which splits ∂1. The

set of positive-length paths x ∈ NonTip (I) is a basis for Im (∂1) = Ker (ε). Each

of these x may be uniquely expressed as x = ay, a ∈ Γ1 and y ∈ NonTip (I).

Let s0 (x) = τ (a) y. Then ∂1 (τ (a) y) = ay = x, so ∂1s0 is the identity map on

Im (∂1) = Ker ε.

Lemma 3.12. Suppose that φ is a monic element of Ker (∂1) with Tip τ (a) y. Then

ay has a (necessarily unique) factorization ay = γz, with γ ∈ Γ2 and z ∈ NonTip (I).

94

Proof. Since a is an arrow and I ⊆ J2, a must be a proper left factor of any such γ.

Then any such z is a proper right factor of y, and so z ∈ NonTip (I). As no element

of Γ2 = MinTip (I) divides any other, it is enough to prove that any ay ∈ Tip (I).

This is true as otherwise ∂1 (φ) cannot be zero.

We also know that each γ ∈ Γ2 factorizes uniquely as ay, with a ∈ Γ1 and

y ∈ NonTip (I). Since ay ∈ Tip (I), it follows that τ (a) y − s0∂1 (τ (a) y) is monic

with Tip τ (a) y, So we can define a Λ-homomorphism

⊕
γ∈Γ2

eτ(γ)Λ
∂2−→
⊕
a∈Γ1

eτ(a)Λ

by setting

∂2

(
eτ(γ)

)
:= eτ(a)y − s0∂1

(
eτ(a)y

)
.

Then ∂1∂2 = 0, since s0 splits ∂1. Moreover, the upshot of lemma 3.12 is that

Im (∂2) = Ker (∂1). To see this, we shall construct a k-linear map s1 : Ker (∂1) →⊕
γ∈Γ2

eτ(γ)Λ splitting ∂2.

Algorithm 3.2.2. Split ∂2

Input: φ ∈ Ker (∂1)

Output: s1(φ) such that ∂2 (s1 (φ)) = φ

1: if φ = 0 then

2: s1 (φ) is 0.

3: else

4: Tip (φ) is eτ(a)y for unique a ∈ Γ1, y ∈ NonTip (I)

5: c := coefficient of τ (a) y in φ.

6: ay = γz for unique γ ∈ Γ2, z ∈ NonTip (I) (Lemma 3.12).

7: s1 (φ) is c · eτ(γ)z + s1

(
φ− ∂2

(
c · eτ(γ)z

))
.

95

8: end if

9: return s1(φ)

Lemma 3.13. The Algorithm 3.2.2 terminates and is correct. The routine does define

a k-linear map s1 such that ∂2s1 is the identity on Ker (∂1).

Proof. The algorithm terminates because at each stage Tip (φ) decreases and we

know that B is a well-ordered basis.

For k-linearity we pick φ1, φ2 with Tip (φ1) ≥ Tip (φ2) such that s1 (φ1 + φ2) 6=

s1 (φ1)+ s1 (φ2) and Tip (φ1) is as small as possible. If Tip (φ1 + φ2) = Tip (φ1), then

we can contradict the minimality of this counterexample. If Tip (φ1 + φ2) < Tip (φ1),

then Tip (φ1) = Tip (φ2) = eτ(a)y, occurring with coefficient c in φ1, and −c in φ2.

Factorize ay = γz. Then get cancelation, and

s1 (φ1) + s1 (φ2) = s1

(
φ1 − ∂2

(
c · eτ(γ)z

))
+ s1

(
φ2 + ∂2

(
c · eτ(γ)z

))
.

By the minimality assumption, however, the right hand side is s1 (φ1 + φ2). And then

we can prove that s1 splits ∂2 by using a minimal counterexample argument.

Corollary 3.14. Im (∂2) = Ker (∂1).

Proof. We already have that Im (∂2) ⊆ Ker (∂1) and so we show that Ker (∂1) ⊆

Im (∂2). Let x ∈ Ker (∂1). Then by algorithm 3.2.2 we have that s1 (x) ∈ Im (∂2) and

as ∂2 (s1 (x)) = x, we have that Ker (∂1) ⊆ Im (∂2) .

Example 3.2.2. Continuing example 3.2.1 we have that

MinSharp (I) = {aa, cd, db, dd+ bc, cba+ acb, cbc, bac+ bc, bcb}

Then

s0∂1

(
eτ(c)ba

)
= s0 (cba) = s0 (acb) = eτ(a)cb,

so that

∂2

(
eτ(cba)

)
= eτ(c)ba+ eτ(a)cb.

96

Example 3.2.3. Continuing the previous example 3.2.2 we have

∂1

(
eτ(c)ba

)
= cba = acb,

and so φ := eτ(c)ba+ eτ(a)cb lies in Ker (∂1). So Tip (φ) = eτ(c)ba, and cba factors as

γz with γ = acb, z = v1. Then ∂2

(
eτ(cba)

)
= eτ(c)ba+eτ(a)bc, so s1 (φ) = eτ(cba)+s1 (0).

That is,

s1

(
eτ(c)ba+ eτ(a)cb

)
= eτ(cba).

Lemma 3.15. Let φ be a nonzero element of Ker (∂2). Let Tip (φ) be eτ(γ)x. Then

γx has a left factor in Γ3.

Proof. We need to verify the first two conditions of definition of Γn for γx. They

follow from the nature of the preferred basis, and from the fact that ∂2 (φ) does not

have tip equal to Tip
(
∂2

(
eτ(γ)

))
x.

3.2.3 The Anick-Green resolution

Definition 3.2.2. The terms of the Anick-Green resolution are the projective

Λ-modules

Pn =
⊕
γ∈Γn

eτ(γ)Λ for n ≥ 0.

The preferred basis for Pn consists of the eτ(γ)x , where γ ∈ Γn, x ∈ NonTip (I)

and τ (γ) = o (x).

Lemma 3.16. Sending eτ(γ)x to γx injects the preferred basis of Pn into B. The

admissible ordering on B therefore induces a well-ordering on the preferred basis of

Pn.

Proof. Follows from the definition of Γn.

97

Assume we have constructed ∂1, ∂2, s1 as in the previous section 3.2.2. Let n ≥ 3.

Assume we have constructed differentials ∂m for m < n, and that we have a k-linear

map sn−2 splitting ∂n−1.

Each γ ∈ Γn factors uniquely as γ = γ1γ2, with γ1 ∈ Γn−1 and γ2 ∈ NonTip (I).

Define ∂n by

∂n (γ (τ)) := τ (γ1) γ2 − sn−2∂n−1 (τ (γ1) γ2) .

with the splitting map as constructed in algorithm 3.2.2. Then as before we can show

that

Im ∂n = Ker ∂n−1.

To summarize we state the following theorem.

Theorem 3.17. The Anick-Green resolution, with differentials ∂n and splitting sn−1

as constructed above is a Λ-projective resolution of
⊕

v∈Γ0
Sv.

3.2.4 The Resolution of a Vertex Simple Module

In the previous section we have shown how to compute the projective resolution

for
⊕

v∈Γ0
Sv. We shall now restrict our attention to focusing on just one Sv at a

time. We also present the maps ∂i that we defined in the previous section in an

alternative way using more Gröbner basis theory. This is the method that we choose

for implementation purposes in our program.

For each vertex v (respectively each idempotent ev) we wish to define right Λ-

module homomorphisms:

∂i(v) :
⊕
p∈Γi

o(p)=v

eτ(p)Λ →
⊕

q∈Γi−1

o(p)=v

eτ(q)Λ, for i = 1, 2, 3.

so that we get an exact sequence:

98

⊕
p∈Γ3

o(p)=v

eτ(p)
∂3→
⊕
p∈Γ2

o(p)=v

eτ(p)
∂2→
⊕
p∈Γ1

o(p)=v

eτ(p)
∂1→
⊕
p∈Γ0

o(p)=v

eτ(p)
ε→ Sv → 0 (3.2)

where Sv is the simple Λ-module associated to the vertex v, eτ(p) is the idempotent

corresponding to the vertex τ(p), and ε(v) : evΛ → Sv is the projective cover of Sv. To

define the ∂i we need only define ∂i(eτ(p)) since if λ ∈ Λ then ∂i

(
eτ(p)

)
λ) = ∂i

(
eτ(p)

)
λ.

Note that for all o(p) = v, we have simply that
⊕

p∈Γ0
eτ(p)Λ = evΛ.

∂1: We have that the map ∂1 is the same as above in the previous section. That

is, if a ∈ Γ1 such that o(a) = v, then a is an arrow from v to τ(a). Recall that

∂1(o(v) · a) = eva. As a ∈ evΛeτ(a) we know that if we define ∂1v on the generators of⊕
a∈Γ1

eτ(a)Λ can be extended to a right Λ-module homomorphism.

∂2: Next let t ∈ Γ2 be an element of MinSharp(I) originating at vertex v. We

know from the definition of Γ2 that we can write t = a
′
b
′
for a

′ ∈ Γ1 and b
′ ∈ B. We

know that Γ1 is just the set of arrows and so a
′
is just the first arrow in the path t.

This is useful to know for computational purposes, as all we have to do is take off the

first arrow from t. As G = MinSharp(I) is the reduced Gröbner basis for I, there is a

unique minimal sharp element ft = t+
∑

j αj,tpj,t where t > pj,t for all j, αj,t ∈ kr{0}

and each pj,t ∈ NonTip(I). For each pj,t there is an aj,t ∈ Γ1 and qj,t ∈ B such that

pj,t = aj,tqj,t. Knowing this, we define the map ∂2 as follows:

∂2(t) = eτ(a
′)b

′
+
∑

j

eτ(aj,t)αj,tqj,t ∈
⊕
a∈Γ1

o(a)=v

eτ(a)Λ.

Since each path that occurs in ft has origin v, we have that the arrows a
′
and aj,t have

origin v and so ∂2(v) is well-defined on the generators of
⊕

t∈Γ2
eτ(t)Λ where o(t) = v.

Then we can extend ∂2(v) to a right Λ-module homomorphism.

∂3: Let p ∈ Γ3 be a word with origin v. We can write p = tb = b
′
t
′
with t ∈ Γ2.

We know that t has origin vertex v. Now let ft and ft′ be the minimal sharp elements

of I with tips t and t
′
respectively. As we know that we have a Gröbner basis G, by

99

reduction theory (see [FFG93]) we can reduce b
′
ft′ − ftb to 0 by elements of G. We

will now review some of the basic features of reduction that we will use.

Let x ∈ I and z = zw = vz for some vertices v and w, then we have a sequence

of 4-tuples

(
γ1, c1, f

′

1, d1

)
, . . . ,

(
γs, cs, f)s

′
, ds

)
where γj are nonzero elements of k, cj, dj ∈ B and f ′j ∈ G satisfy the two following

properties:

1. For j = 0, ..., s − 1 the tip of z −
(
γ1c1f

′
1d1 + · · ·+ γjcjf

′
jdj

)
is the tip of

cj+1f
′
j+1dj+1 with coefficient γj+1 and

2. z =
∑s

j=1 γjcjf
′
jdj.

We will say that in the above description z reduces to 0. We now return to

b′ft′ − ftb. As b′ft′ − ftb is in I, it reduces to 0 and we have that

b′ft′ − ftb =
∑
j,p

αj,pcj,pfj,pdj,p (3.3)

where αj,p ∈ k∗, cj,p, dj,p ∈ B and fj,p ∈ G with Tip (cj,pfj,pdj,p) < p. In general, (3.3)

is not unique. However, a reduction must exist. And for our purposes the important

thing is that it may be found algorithmically.

We shall do this by ordering the paths in b′ft′ − ftb and we will start with the

largest path that is divisible by the tip of an element m ∈ MinSharp(I). Subtracting

the appropriate multiple of m we continue the same process. We rewrite (3.3) as

b′ft = ftb+
∑

+j, pαj,pcj,pfj,pdj,p. (3.4)

Lastly, we consider only the terms of right hand side of (3.4) where cj,p has length

0, i.e., cj,p = v. We then write this sum as:

100

ftb+
∑
j′,p

αj′,pfj′,pdj′,p.

Every fj′,p ∈ MinSharp(I) has a tip tj′,p which has origin v and is in Γ2. We can

finally define the map ∂3 as follows:

∂3(p) = eτ(t)b+
∑
j′,p

eτ(tj′,p)
αj′,pdj′,p ∈

⊕
t∈Γ2

o(t)=v

eτ(t)Λ.

Once again, as ∂3 is well-defined on the generators, it can be extended to a right

Λ-module homomorphism.

Theorem 3.18. The sequence (3.2) on page 98 defined above is exact.

Proof. For a proof see Green et al. [FGKK93, pages 1878-1879]

The next lemma is of importance to us as we wish to compute minimal resolutions.

We use it for both our linear algebra construction and for the Anick-Green methods.

Lemma 3.19. The Anick-Green resolution for Sv,

· · · → P2 → P1 → P0 → Sv → 0

is minimal at P1 and at P0.

Proof. The radical of Λ is the ideal generated by the arrows. So Im (∂1) ⊆ Rad (P0)

from the construction of ∂1 and Im (∂2) ⊆ Rad (P1) since I ⊆ J2.

This construction will give a projective resolution for any given degree n, however,

the Anick-Green resolution is not necessarily minimal at P2 as the next example shows.

However, as we shall see in the next section, we are able to use lemma 3.19 along

with the technique of one-point extension to compute a minimal resolution.

101

Example 3.2.4. Consider B ∼=Morita F2S4 with Ext-quiver as in example 3.1.1. Let

Sv1 be the simple module corresponding to the idempotent ev1. Then if we compute

the projective resolution of Sv1 we get the following:

eτ(aa)Λ⊕ eτ(cd)Λ⊕ eτ(cba)Λ⊕ eτ(cbc)Λ
∂2−→ eτ(a)Λ⊕ eτ(c)Λ

∂1−→ ev1Λ
ε−→ Sv1 −→ 0

However, we shall see in our example at the end of the chapter that eτ(cbc) is a redun-

dant generator and is therefore not minimal at (P2, ∂2).

3.2.5 Resolution for Finitely Presented modules

The Anick-Green resolution has two limitations: it is not minimal, and it only exists

for vertex simple modules. Of these limitations, not being minimal is more serious

in its effect in cohomological computations. We give an example of how quickly the

Anick-Green resolution can grow:

Example 3.2.5. Consider the projective resolution of the simple B-module Sv1 as in

example 3.2.4. Continuing using the Anick-Green resolution, the number of PIMs in

each of the projective modules Pn in the resolution is:

{1, 2, 4, 7, 13, 26, 52, 103, 205, 410, 820, 1639, 3277, 6554}

However, the number of PIMs for the minimal resolution is:

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}

We will first explain how to use the ideas of Anick and Green to compute projective

resolutions for arbitrary modules that are not necessarily vertex simple. Then we will

show how this allows us to compute minimal projective resolutions.

The goal is to construct a resolution for an arbitrary finitely presented Λ-module

M . We shall construct a quiver Γ∗ with one more vertex than Γ, in such a way that

M is the Heller module Ω(M) of the new vertex simple. Since the first terms of the

102

Anick-Green resolution are minimal, we can iteratively compute a minimal resolution

for M .

Definition 3.2.3. Let M be a finitely generated Λ-module. We call

⊕
j∈J

vjΛ
F→
⊕
i∈I

viΛ
Φ
� M → 0 (3.5)

a presentation of M where M =
⊕

i∈I viΛ/ ImF .

Using this approach, the information that is important to us is the presentation

of the module, i.e., the crucial information is F . We first introduce the notion of a

one-point extension of the algebra Λ.

Definition 3.2.4. Let M be a finitely presented Λ-module, as in (3.5). Define the

one-point extension of Λ, denoted Λ∗, to be the k-algebra of matrices

(
λ m
0 f

)
,

with λ ∈ k, f ∈ Λ and m ∈M , with usual matrix addition and multiplication, e.g.

(
λ1 m1

0 f1

)
·
(
λ1 m2

0 f2

)
=

(
λ1λ2 λ1m2 +m1f2

0 f1f2

)
.

Now we state some basic facts and properties of our new algebra.

Lemma 3.20. Denote by v∗ the matrix

(
1 0
0 0

)
∈ Λ∗. Let Sv∗ be the degree 1 Λ∗-

module on which

(
λ m
0 f

)
acts as multiplication by λ. Then

1. The map f 7→
(

0 0
0 f

)
identifies Λ with a subring of Λ∗, and so all Λ∗-modules

are also Λ-modules.

2. The idempotent v∗ is primitive. The Λ∗-module Sv∗ is well-defined.

3. The projective cover of Sv∗ is v∗Λ∗.

4. The matrices

(
0 m
0 0

)
in Λ∗ form a Λ∗-submodule, the Heller module ΩSv∗.

103

5. As a Λ-module, ΩSv∗
∼= M .

Proof. See D. Green [Gre97, page 43]

We would now like to see how to concretely construct the one point extension of

the path algebra kΓ. We will extend the quiver Γ to a quiver Γ∗ by adding one vertex

to Γ such that Γ∗ only has arrows coming out of it and none going into it. Then we

define an ideal I∗ such that we get Λ∗ as the quotient of kΓ∗.

Define Γ∗ to be the quiver obtained from Γ by adding one new vertex v∗, and by

adding one arrow v∗
a∗i−→ vi for each i ∈ I.

The path algebra kΓ∗ contains kΓ as a subalgebra. Define I∗ to be the ideal in

kΓ∗ generated by I, together with
∑

i∈I a
∗
i fi,j for each j ∈ J . Here, the fi,j ∈ kΓ

with support in NonTip (I) are uniquely determined by

F (vj) =
∑

i

vifi,jvj and fij = vifijvj.

Denote by π the projection kΓ −→ kΓ/I ∼= Λ. We need to know the induced map π∗

that we obtain as we go from kΓ to kΓ∗. This is given in the following proposition.

Proposition 3.21. There is a unique k-algebra homomorphism π∗ : kΓ∗ → Λ∗ which

sends v∗ to

(
1 0
0 0

)
, a∗i to

(
0 Φ (vi)
0 0

)
and f ∈ kΓ to

(
0 0
0 π (f)

)
. This homomor-

phism is surjective with kernel I∗. That is,

kΓ∗/I∗ ∼=π∗ Λ∗.

Suppose that in the presentation (3.5), the number |I| of generators of M is the

smallest possible. That is, suppose that Ker (Φ) ⊆ Rad (⊕iviΛ). Then the pair (Γ∗, I∗)

is a special quiver with relations.

Proof. For a proof see [Gre97].

104

Example 3.2.6. Let Γ be the quiver

e1
a // e2
b

oo

Let k = F3. Take I = 〈aba, bab〉, so that Λ = kΓ/I is the basic algebra for the group

algebra kS3. Take S to be the trivial module with presentation

e2Λ
F−→ e1Λ

Φ−→ k −→ 0

where F (e2λ) = a · λ. Then the quiver Γ∗ is

e1•
a // e2•
b

oo

e∗1

a∗

OO

and the ideal I∗ is generated by aba, bab, and a∗a.

Lemma 3.22. 1. The subalgebra Λ is also a right ideal in Λ∗.

2. Any path in Γ∗ with positive length has terminus vertex in Γ.

3. For any vertex v ∈ Γ, the projective Λ∗-module vΛ∗ is equal to vΛ as a Λ-module.

Proof. For the last part, observe that vΛ∗v∗ = 0.

The last thing we need to introduce is an admissible ordering on the set B∗. We

construct the ordering as an extension of the admissible ordering > on B.

There are three types of paths in Γ∗ :

1. paths γ ∈ B;

2. the vertex path v∗; and

3. paths a∗i γ
′ for i ∈ I, γ′ ∈ B.

105

Pick an ordering on the finite set I. Then define the ordering ≤∗ on B∗ as follows:

1. ≤∗ extends ≤ on B;

2. γ <∗ v∗ <∗ a∗i γ
′;

3. a∗1i
γ′ ≤∗ a∗i2γ

′
2 if i1 < i2, or if i1 = i2 and γ′1 ≤ γ′2.

Lemma 3.23. The ordering ≤∗ on B∗ is admissible, and extends the ordering ≤ on

B. We have

MinTip (I) = MinTip (I∗) ∩ B,

and

MinSharp (I) ⊆ MinSharp (I∗) .

Proof. For a proof see D. Green [Gre97].

Example 3.2.7. Let Γ be the quiver given in Figure 3.1 in example 3.1.1 and take

the length-lexicographic ordering on B = {v1,2 , a, b, c, d, aa, ...} as before

v1 < v2 < a < b < c < d < aa < ac < ba < · · ·

Define a new ordering � on B∗ = B ∪ {(v∗, a∗, a∗a, a∗c, a∗aa, ...)r , for r ∈ Z+} as

v∗ ≺ a∗ ≺ a∗a ≺ a∗c ≺ a∗aa ≺ · · · ≺ v1 ≺ v2 ≺ a ≺ b ≺ c ≺ d ≺ aa ≺ · · ·

This ordering is admissible, however, it is not a length-lexicographic ordering.

Now we can finally obtain a projective resolution of any finitely presented Λ-

module.

Theorem 3.24. Let M be a finitely-presented Λ-module, presented with a smallest

set of generators in the exact sequence⊕
j∈J

vjΛ
F−→
⊕
i∈I

viΛ
Φ−→ X.

106

As above, construct the special quiver with relations (Γ∗, I∗) and algebra Λ∗ with

kΓ∗/I∗ ∼= Λ∗. Construct the Anick-Green resolution for the new vertex simple Sv∗ :

· · · −→ P v∗

n
∂n−→ P v∗

n−1 −→ · · · −→ P v∗

1
∂1−→ P v∗

0
ε−→ Sv∗ −→ 0.

Then P v∗
0 is v∗Λ∗, P v∗

1 is
⊕

i∈I viΛ, and Im (∂1) is M . Therefore

· · · −→ P v∗

n
∂n−→ P v∗

n−1 −→ · · · −→ P v∗

2
d2−→
⊕
i∈I

viΛ
Φ−→M −→ 0

is a Λ-projective resolution of M . Moreover, each P v∗
r is a direct sum of modules of

the form vΛ for vertices v ∈ Γ.

3.2.6 Minimal Projective Resolutions

Now that we know how to construct a resolution for any module, we would like to

know how to get rid of redundant generators in the resolution using the Gröbner basis

approach. We will then combine this with the Anick-Green resolution and therefore

have a way of constructing a minimal resolution.

The following proposition gives us a way to get rid of redundant generators.

Proposition 3.25. Let M be a finitely presented Λ-module in the exact sequence⊕
j∈J

vjΛ
F−→
⊕
i∈I

viΛ
Φ−→M .

Also denote by F the matrix (fij), where F (vj) =
∑

i vifijvj.

Suppose that this presentation involves redundant generators. In other words,

suppose that Im (F) is not contained in Rad
(⊕

i∈I viΛ
)
. Then there exists i0 ∈ I,

j0 ∈ J such that fi0j0 is invertible, i.e. fi0j0 = λevi0
+ x for some λ ∈ k× and

x ∈ Rad (Λ). Let g ∈ Λ be such that fi0j0g = gfi0j0 = evi0
.

Set I ′ := I \ i0, J ′ := J \ j0. Define the matrix F ′ =
(
f ′ij
)

for i ∈ I ′ and j ∈ J ′

by

f ′ij = fij − fij0gfi0j.

107

Then ⊕
j∈J ′

vjΛ
F ′
−→

⊕
i∈I′

viΛ
Φ|I′−→ X

is exact, and Im (Φ|I′) = M .

Proof. For a proof see D. Green [Gre97, pages 46-47].

We write down an algorithm to reduce the matrix of a given resolution that is

minimal. We first need to check if a matrix has an invertible entry.

Algorithm 3.2.3. Matrix with Invertible Entries

We would like to determine if an m×n matrix F has a non-nilpotent entry. An entry

is not nilpotent if it is of the form λ+ k for λ nilpotent and k ∈ k.

Input: An m× n matrix F = [fi,j]

Output: True if all entries are nilpotent or the set {i, j} (the position of the first

non-nilpotent entry) if an entry is not nilpotent.

1: for i from 1 to m do

2: for j from 1 to n do

3: if fi,j = λ+ k for λ nilpotent and k ∈ k then

4: return {i, j}

5: end if

6: end for

7: end for

8: return True

We now describe how to completely reduce a matrix F for a minimal presentation

of a module M .

Algorithm 3.2.4. Reduce Matrix

Input: F = [fi,j], an m× n matrix which gives the presentation for M above.

Output: A matrix F ′ which gives a minimal presentation of M .

108

1: while F has a non-nilpotent entry using Algorithm 3.2.3 do

2: {i0, j0} := IsNilpotent (F)

3: m := m− 1;

4: n := n− 1;

5: g := f−1
i0,j0

using Lemma 1.14

6: for r from 1 to m do

7: if r < i0 then

8: k := r;

9: else if r ≥ i0 then

10: k := r + 1

11: end if

12: for s from 1 to n do

13: if l < j0 then

14: l := s;

15: else if s ≥ j0 then

16: l := s+ 1

17: end if

18: f
′
r,s := fk,l − fk,j0 · g · fi0,l.

19: end for

20: end for

21: F :=
[
f
′
r,s

]
22: end while

23: return F

Therefore we can turn any presentation of M into one with a minimal sized gener-

ating set. Therefore we now have an algorithmic way of taking any finitely presented

module M and constructing a minimal projective resolution of it.

109

Let M be a Λ-module, finitely presented as

Q1 −→ Q0 −→M −→ 0.

The following algorithm constructs as many steps as desired in the minimal resolution

(P•, ε) of M .

Algorithm 3.2.5. Anick-Green Minimal Resolution

Input: A finite minimal presentation of a Λ-module M as in (3.5) and degree n of

computation desired.

Output: A minimal projective resolution (P•, ε) up to degree n.

1: Compute first 2 steps of Anick-Green resolution using Theorem 3.24.

Q2 −→ S1 −→ P0 −→M −→ 0.

2: Obtain presentation of Ω (M)

Q2 −→ S1 −→ P0.

3: Minimize presentation of Ω (M) as in Proposition 3.25 using Algorithm 3.2.4 to

get minimal presentation of Ω (M)

R2 −→ P1 −→ P0.

4: P1 −→ P0 is beginning of minimal projective resolution.

5: Repeat until desired level of resolution equals n.

Example: The best way to get a feel for this algorithm is to work through an example.

We shall continue our example of the basic algebra B for S4 in characteristic 2 as in

example 3.1.1 to demonstrate algorithm 3.2.5 in action.

Let k = F2 and G = S4. Let B be the basic algebra for F2S4. As we saw in

example 3.1.1 we have 2 vertices and 4 arrows. We also have that kΓ/I = Λ where

MinSharp (I) = {aa, cd, db, dd+ bc, cba+ acb, cbc, bac+ bc, bcb} (3.6)

110

We begin the minimal resolution for the vertex simple module Sv1 which has presen-

tation

eτ(a)Λ⊕ eτ(c)Λ
F−→ ev1Λ

Φ−→ Sv1 −→ 0, (3.7)

where F (τ (c)) = c, F (τ (e)) = e and Φ (c) = Φ (e) = 0. It is evident that there are

no redundant summands to discard in Q0 = ev1Λ.

We now form the one-point extension associated to the presentation of Sv1 . As

P0 = ev1Λ has just one summand, the quiver Γ∗ is

v1a 66
c // v2
b

oo dee

v∗

a∗

OO (3.8)

The relations ideal I∗ is then generated by MinSharp (I) together with the paths

a∗a and a∗c . These 10 generators for I∗ satisfy the definition of a small Gröbner

basis. Thus the map eτ(a)Λ⊕ eτ(c)Λ
F−→ ev1Λ is the map S1 → P0 obtained from the

Anick-Green resolution.

We have the set Γ∗
2 = {a∗a, a∗c} and we wish to compute the higher overlaps. We

obtain

Γ∗
3 = {a∗aa, a∗cd, a∗cba, a∗cbc} (3.9)

The term P ∗
3 in the Anick-Green resolution has one summand Λ for each element of

Γ∗
3. The generator corresponding to a∗aa is denoted τ (a∗aa) (for simplification of

notation at times we leave off the idempotent e and denote ev as v). We now recall

how to construct ∂3 (τ (a∗aa)). We consider the image F (a∗aa) = τ(a∗)aa. Then we

write τ(a∗)aa = tb = b
′
t
′
for t and b as in section 3.2.4. We have

tb = τ(a∗)a · a

and

b
′
t
′

= τ(a∗) · aa.

111

Next we compute b
′
ft′ − ftb as before:

b
′
ft′ − ftb = τ(a∗) · aa− τ(a∗)a · a = 0

Thus ∂3 (τ (a∗aa)) = τ (a∗a) a. Similarly, ∂3 (τ (a∗cd)) = τ (a∗c) d.

To compute ∂3 (τ (a∗cba)) we do the same as above for F (a∗cba) = τ (a∗) cba.

tb = τ(a∗)c · ba

and

b
′
t
′

= τ(a∗) · cba.

Next we compute b
′
ft′ − ftb as before. Recall that ft and ft′ are the minimal sharp

elements of I∗ with tips t and t
′
respectively:

b
′
ft′ − ftb = τ(a∗) · (cba+ abc)− τ(a∗) · cba = τ(a∗)abc

Thus we have that

τ (a∗cba) 7→ τ (a∗c) ba+ τ (a∗a) bc

Lastly, we note that τ (a∗cbc) 7→ τ (a∗c) bc.

So Q2 = P v∗
3 = ev1Λ⊕ ev2Λ⊕ ev2Λ⊕ ev2Λ as τ (a∗a) = ev2 and τ (a∗c) = ev2 . The

presentation we get of ΩSv1 = Im (F) is

Q2 −→ eτ(a∗a)Λ⊕ eτ(a∗c)Λ. (3.10)

The map Q2 −→ eτ(a∗a) ⊕ eτ(a∗c) = ev1Λ⊕ ev2Λ has the matrix[
a 0 cb 0
0 d ba bc

]
(3.11)

As all elements in this matrix are nilpotent (i.e. in the radical), there are no redundant

summands in S1 = eτ(a∗a)Λ⊕ eτ(a∗c)Λ. Hence P1 is eτ(a∗a)Λ⊕ eτ(a∗c)Λ = ev1Λ⊕ ev2Λ.

112

Now we forget about the one point extension (3.8) and construct a new one using

the presentation (3.10) of ΩSv1 . The new quiver Γ∗ is

v1a 66
c // v2
b

oo dee

v∗

a∗c

OO

a∗a

OO (3.12)

where for notational ease we let a∗a = A and a∗c = C. The relations ideal I∗ is

generated by I together with the 4 elements Aa, Cd, Cba + Acb, and Cbc. We have

ordered the paths using the ordering ≤∗ with A <∗ C.

We then know that MinSharp (I) and these 4 generators generate I∗. In addition

they form a reduced Gröbner basis. Thus the Gröbner basis is

MinSharp (I∗) = MinSharp (I) ∪ {Cbc, Cba+ Acb, Cd,Aa} (3.13)

Thus

Γ∗
2 = {Cbc, Cba, Cd,Aa} (3.14)

Γ∗
3 = {Cbcd, Cbcb, Cbaa, Cbac, Cdb, Cdd,Aaa} (3.15)

We construct a presentation of Ω2Sv1 using the Anick-Green resolution. The term S2

is

S2 = eτ(Cbc)Λ⊕ eτ(Cba) ⊕ eτ(Cd) ⊕ eτ(Aa) = ev2Λ⊕ ev1Λ⊕ ev2Λ⊕ ev1Λ (3.16)

The map to P1 = eτ(A)Λ⊕ eτ(C)Λ = ev1Λ⊕ ev2Λ comes by replacing Cbc, Cba+Acb,

Cd, and Aa by their values in P1. Now we want Q3 → S2, where Q3 has a summand

for each of the elements in Γ∗
3

Q3 = τ(Cbcd)Λ⊕ τ(Cbcb)Λ⊕ τ(Cbaa)Λ⊕ τ(Cbac)Λ⊕ τ(Cdb)Λ

⊕τ(Cdd)Λ⊕ τ(Aaa)

= ev2Λ⊕ ev1Λ⊕ ev1Λ⊕ ev2Λ⊕ ev1Λ⊕ ev2Λ⊕ ev1Λ

113

We would like to compute the images of the idempotents in Q3. We wish to

compute the image of τ (Cbcd). The value of τ (Cbcd) in P1 is τ (C) bcd and we have

that

b
′
ft′ − ftb = τ(C)bcd− τ(C)bcd = 0.

So τ (Cbcd) 7→ τ (Cbc) d. Similarly, as b
′
ft′ − ftb = 0 for the following we have:

τ (Cbcb) 7→ τ (Cbc) b

τ (Cdb) 7→ τ (Cd) b

τ (Aaa) 7→ τ (Aa) a

To compute the image of τ(Cbaa) we look at the value of τ(Cbaa) in P1 which is

τ(C)baa. We have that

tb = τ (C) ba · a

b′t′ = τ (C) b · aa

b′ft′ − ftb = τ (C) baa− (τ (C) baa+ τ (A) cba)

= τ (A) cba = τ (A) acb

Now we need to write this as an algebra sum of I∗. We do this by division. We see

that τ(A)acb = τ(A)a · cb. And thus we have that

τ(C)baa 7→ τ(Cba)a+ τ(Aa)cb

Similarly we have that

τ(Cbac) 7→ τ(Cba) · c+ τ(Cbc) · 1

τ(Cdd) 7→ τ(Cd) · d+ τ(Cbc) · 1

Thus the matrix for the map is:

f :

d b 0 1 0 1 0
0 0 a c 0 0 0
0 0 0 0 b d 0
0 0 cb 0 0 0 a

 (3.17)

114

Thus the resolution we have so far is not minimal at S2, since f1,4 and f1,6 = 1 are

invertible. Thus the generator τ(Cbc) is superfluous and not needed. We replace the

above matrix with the 3× 6 matrix (using Proposition 3.25) with entries

f ′ij = fi′j′ − fi′4f1j′ , where i′ = i+ 1 and j′ =

{
j, j < 4

j + 1, j ≥ 4

}
. (3.18)

For example,

f
′

1,1 = f2,1 − f2,4f1,1 = 0− c · d = cd = 0

f
′

1,2 = f2,1 − f2,4f1,2 = 0− cḃ = cb

f
′

3,6 = f4,7 − f4,4f1,7 = a− 0 · 0 = a− 0 = a

The resulting matrix is 0 cb a 0 c 0
0 0 0 b d 0
0 0 cb 0 0 a

 (3.19)

All elements of this matrix are nilpotent and therefore we can conclude that P2 is

eτ(Cba)Λ ⊕ etau(Cd)Λ ⊕ eτ(Aa)Λ which is just ev1Λ ⊕ ev2Λ ⊕ ev1Λ. The zero column

corresponds to a summand whose image in P2 is zero, and can therefore be deleted.

Therefore we have the map from P2
∂2→ P1 given by the matrix[
ba d 0
cb 0 a

]
(3.20)

Continuing this process we compute

P3 = eτ(Cdd)Λ⊕ eτ(Cdd)Λ⊕ eτ(Cdb)Λ⊕ eτ(Cbaa)Λ⊕ eτ(Aaa)Λ

= ev2Λ⊕ ev1Λ⊕ ev1Λ⊕ ev1Λ

P4 = eτ(Cddba)Λ⊕ eτ(Cddd) ⊕ eτ(Cbaaa)Λ⊕ eτ(Aaaa)Λ

= ev1Λ⊕ ev2Λ⊕ ev2Λ⊕ ev1Λ⊕ ev1Λ

P5 = eτ(Cdddd)Λ⊕ eτ(Cdddb)Λ⊕ eτ(Cddbaa) ⊕ eτ(Cdbacd)Λ

⊕ eτ(Cbaaaa)Λ⊕ eτ(Aaaaa)Λ

= ev2Λ⊕ ev1Λ⊕ ev1Λ⊕ ev2Λ⊕ ev1Λ⊕ ev1Λ

115

with the maps of generators given by

∂3 =

c 0 a 0
d b 0 0
0 0 cb a

∂4 =

ba d 0 0 0
0 c ac+ c 0 0
cb 0 0 a 0
0 0 0 cb a

∂5 =

c 0 a 0 0 0
d b 0 0 0 0
0 ba+ b 0 d 0 0
0 0 cb 0 a 0
0 0 0 0 cb a

This resolution continues on indefinitely and can be computed rapidly for small n on

a computer using the author’s implementation in GAP. For the program code, see

http://math.arizona.edu/~pawloski/programs.

116

Chapter 4

Implementations and Examples in GAP

We have given all of the algorithms needed to compute projective resolutions of simple

A-modules for a finite dimensional algebra A. We have chosen to use the linear

algebra techniques described after comparing timings of the linear algebra method of

computing resolutions versus the Anick-Green method (see section 5.7). In addition,

we have given the necessary theory and algorithms to compute the generators and

relations of the Ext-algebra and cohomology ring of kG by computing in the basic

algebra B. In this chapter, we give an expository description of the algorithms and

how the theory is implemented in GAP. Throughout the chapter we use our running

example of the basic algebra B generated from the group algebra of the symmetric

group on four letters over F2. For more information on the data structures that are

used see Appendix B. For all of the author’s programs referred to in this dissertation

written for GAP see www.math.arizona.edu/~pawloski/programs.

4.1 Cohomology and Ext

We now describe our fully automated program to compute a minimal set of generators

and relations for un
k=0 ui,j Extk

B (Si, Sj) for the Morita equivalent basic algebra B for

a group algebra kG. We shall only describe the procedure for computing

E(B) = un
k=0 ui,j Extk

B (Si, Sj)

as the cohomology ring is a special case where we simply compute uk Extk
B (kB,kB)

for the simple B-module kB coming from the trivial kG-module k. In chapter 5 we

present many of the results of the calculations from our implementation.

For the remainder of the section, we are in the following situation. Let B be the

basic algebra of a group algebra kG, where k is a splitting field. Assume that B is

117

given in terms of a minimal set of generators (arrows and idempotents) and a k-basis

Bi for each PIM eiB given as words in the generators with the matrices for the action

of the generators on the basis elements. In our program we are supplied with this

information from the results of Hoffman [Hof04]. As the k-basis B for B is fixed, we

may refer to the matrix of a linear map. Therefore whenever we refer to a linear map

as a matrix, we mean with respect to this given basis B.

The implementation begins by calculating a projective resolution of all simple

modules. Cohomology and Ext-algebra elements are represented as chain maps on

the computed pieces of the resolution. The products of elements are realized as

compositions of the chain maps. The relations among the generators are obtained by

rewriting the basis in terms of the generators and then applying the generators to the

basis to see if we get another basis element or a relation.

The automated program for the calculation of Ext is called ExtAlgebra. It is a

function of (basicalgebra,n). The program for the cohomology ring computation is

CohomologyRing. It is a function of (basicalgebra,pimnumber,n) where pimnumber is

the number of the PIM for the simple B-module coming from the trivial kG-module.

If you are only interested in the projective resolution of a module then you use the

program ProjectiveResolution(basicalgebra,module,n).

Throughout, we continue our example of S4 for illustrative purposes. However,

for convenience we are going to relabel the original Ext-quiver

1a1a1a1 55
2a1a1 //

2a
1a2a1

oo 2a2a1ii

as follows:

v1a 66
c // v2
b

oo dhh

We also take the liberty of switching back and forth between a vector and the poly-

nomial that the vector represents. The vector (0, 1, 0, 0, 0, 1) represents the sum of

the second and the sixth word in PIM 1a, but we will often refer to it as a+ ac. Now

118

we describe how each step in the process is implemented.

Step 1: Minimal Resolution

Suppose that S1 is a simple B-module. Our aim is to produce a minimal projective

resolution for S1. We begin with a minimal generating set for S1 as a B-module.

Each of the simple modules Si is given as a vertex simple module corresponding to

an idempotent ei and we denote the corresponding PIM as P (Si). We know that

the map ε : P (S1) → S1 is given by quotienting by the radical. We also know from

lemma 3.19 that the first two steps in the resolution are minimal. Therefore we have

a minimal resolution P1 → P0 → S1 that begins:⊕
arrows aj

o(aj)=e1

eτ(aj)B
∂1−→ e1B

ε−→ S1 → 0.

Recall from section 3.2.2 on page 93 that the map ∂1 is just given by left multiplica-

tion by the arrows that originate from the PIM with simple S1. We set up these maps

and projective modules with the procedure InitializeOmegaForBasicAlgebra(ba-

sicalgebra,pimnumber).

gap> init:=InitializeOmegaForBasicAlgebra(basicalg,1);

rec(rowblocks := [1], generators := [

rec(blocks := [1],

blockvector:=[[0*Z(2),Z(2)^0,0*Z(2),0*Z(2),0*Z(2),0*Z(2)]]),

rec(blocks := [1],

blockvector:=[[0*Z(2),0*Z(2),0*Z(2),0*Z(2),Z(2)^0,0*Z(2)]])],

columnblocks := [1, 2])

This represents the projective module P1 and the sequence

P1
∂1−→ P0 → S → 0.

which is

ev1B ⊕ ev2B
∂1−→ ev1B

119

and the map ∂1 is the beginning of the resolution. The map is given on the generators

by ∂1 (ev1 , 0) = a and ∂1 (0, ev2) = c.

Next we construct the matrix for the k-linear map ∂1. This is easily constructed,

because we have a basis for all of the PIMs written as products in the generators of

the algebra B. Thus for each PIM eτ(aj)B we know that each of the basis elements

b ∈ eτ(aj)B maps to aj · b ∈ e1B. As we have images of all basis elements in a PIM,

we simply record the matrix for this transformation. In GAP we get:

gap> hom;

. 1 # e_1 -> a

. # a -> 0

. . . 1 . . # cb -> acb

. # acb -> 0

. 1 # c -> ac

. # ac -> 0

. . 1 . . . # b -> cb

. . . 1 . . # ba -> cba = acb

. . . . 1 . # e_2 -> c

. # d -> 0

. # bc -> 0

The first 6 rows of the matrix represent the image vectors (in PIM 1a) of the basis

elements of PIM 1a when applying the generator a on the left. The last 5 rows of

the matrix represent the image vectors (in PIM 1a) of the basis elements of PIM 2a

when applying the generator c. For example, the third row represents the mapping

of cb to acb which we have recorded above.

The kernel of ∂1, denoted Ω2 (S1) as usual, is therefore the nullspace of the matrix

of ∂1. Computing the null space of a matrix is a standard operation in GAP using

NullspaceMat(hom). The command NullspaceMat returns a k-basis for the nullspace

120

of this matrix:

gap> NullspaceMat(hom);

. 1 # (a,0)

. . . 1 # (acb,0)

. 1 # (ac,0)

. . 1 1 . . . # (cb,ba)

. 1 . # (0,d)

. 1 # (0,bc)

This is a partitioned matrix with the rows of the first six columns representing basis

elements in PIM 1a and the last five columns are basis elements in PIM 2a. So

for example, looking at the fourth row we see that (cb,ba) is in the kernel of ∂1 :

e1aB ⊕ e2aB → e1aB.

Having computed Ω2 (S1), the null space of ∂1, we can compute Rad Ω2 (S1). We

know that for a minimal resolution we have Ker ∂n−1 = Im ∂n ⊆ RadPn−1. Thus, the

minimal generating set for Ω2 (S1) is a basis m1, ...,ms of a subspace M ⊆ Ω2 (S1) that

is complementary to Rad (Ω2 (S1)). So Ω2 (S1) = Spank (m1, ...,ms) + Rad (Ω2 (S1)).

To find a basis for the radical Rad (Ω2 (S1)) we note that:

Rad
(
Ω2 (S1)

)
=
(
Ω2 (S1)

)
· JacB=

∑
arrows ai

(
Ω2 (S1)

)
· ai,

where the arrows ai are the nilpotent generators of the algebra B. Thus we multiply

each of the basis elements bi of Ω2 (S1) by all of the nilpotent generators and take

a basis BRad for the k-linear span of the products aj · bi. We then extend BRad =

{r1, ..., rm} to a basis of (Ω2 (S1)).

As Rad Ω2 (S1) = Ω2 (S1) · JacB and

Rad Ω2 (S1) = Rad Ω2 (S1) · 1 = Rad Ω2 (S1) ·
∑

i

ek =
⊕

k

Rad Ω2 (S1) ek,

121

we can find a complementary basis to the basis of the radical by doing it for each

idempotent ek. This theoretical implication saves time and memory in our compu-

tation in GAP. We extend the basis {r1, ..., rm} of Rad (Ω2 (S1)) to a basis of Ω2 (S)

as follows. We do this by seeing whether the basis vectors in Ω2 (S) found using

the NullspaceMat command are in Spank{r1, ..., rm}. The GAP command for check-

ing inclusion of a vector in a subspace is IsContainedInSpan(mutablebasis,vector).

If the command returns false, we have found a minimal generator for the module

Ω2 (S1) and then add it to the basis for the radical of the kernel by the command

CloseMutableBasis(mutablebasis,vector). We know that it is a minimal generator

as each simple component in Ω2 (S1) /Rad Ω2 (S1) is 1-dimensional and therefore gen-

erated by one element. We do this procedure for each of the idempotents ek of B

until we have reached the proper dimension such that

dimk Span (minimal generators of Ω (S1) · ek) + dimk Rad
(
Ω2 (S1) · ek

)
= dimk (Ω (S1) ek) .

After doing this for each idempotent ek, we know that we have a minimal generating

set for the kernel. After this step is complete, for storage purpose we unbind the basis

of Ω2 (S1) and only keep the minimal generators.

Continuing our example, we have computed the kernel of the homomorphism using

our routine KernelOfHom:

gap> kernel:=KernelOfHom(basicalg,init);

rec(

rowblocks:=[1,2],

basis:=[

rec(blocks:=[1,2],blockvector:=[[0,1,0,0,0,0],[0,0,0,0,0]]),

rec(blocks:=[1,2],blockvector:=[[0,0,0,1,0,0],[0,0,0,0,0]]),

rec(blocks:=[1,2],blockvector:=[[0,0,0,0,0,1],[0,0,0,0,0]]),

122

rec(blocks:=[1,2],blockvector:=[[0,0,1,0,0,0],[0,1,0,0,0]]),

rec(blocks:=[1,2],blockvector:=[[0,0,0,0,0,0],[0,0,0,1,0]]),

rec(blocks:=[1,2],blockvector:=[[0,0,0,0,0,0],[0,0,0,0,1]])

])

The next step is to remove the redundant generators. The GAP routine we have

implemented is called ModuleGeneratorsFromBasis.

For PIM 1a, Rad(Omega)e_1 =

MutableBasis(GF(2),[[0,0,0,1,0,0,0,0,0,0,0]])

For us, this corresponds to the block vector [[0,0,0,1,0,0],[0,0,0,0,0]] (or

(acb, 0)). We now keep the basis vectors for Ω2(S1)e1 that are not in Rad (Ω2(S1)e1).

The vectors in Ω2(S1)e1 are the vectors in basis of the kernel that end in PIM 1a. From

the basis of the kernel above from KernelOfHom, we see that the 1st, 2nd, and 4th words

end in PIM 1a. However, we do not consider the 4th word as it is in Rad (Ω2(S1)) e1.

We will keep both the 1st and the 2nd as they are linearly independent vectors. We

then do the same for PIM 2a.

We next construct a projective cover ω2 : P2 → Ω2 (S). Recall that the projective

covers are additive by Proposition 1.28.3 on page 43. We know that for each simple

module S1 we have corresponding projective cover P (S1) and therefore all we need

to keep track of are where the minimal generators in Ω2 (S1) begin and end and the

image vector of the generator. Therefore, we can record ∂2 as the list of vectors αi,j

. That is, the output of the program for the construction of P2 and ∂2 consists of a

record of the projective modules as a list of numbers such as [1,1,2,2,3]. This refers

to the domain of the map as e1B u e1B u e2B u e2B u e3B (see section B.4 for more

information). It also includes a list [1,1,2] for the range of the map. The other piece

of data we record is a list of images of the idempotents ei in the domain by storing

the corresponding partitioned row vector.

123

The following is what we obtain in the computation that gets us to P2 and ∂2 in

the resolution of S4.

rowblocks:=[1,2],

generators:=[

rec(blocks:=[1,2], blockvector:=[[0,1,0,0,0,0],[0,0,0,0,0]]),

rec(blocks:=[1,2], blockvector:=[[0,0,1,0,0,0],[0,1,0,0,0]]),

rec(blocks:=[1,2], blockvector:=[[0,0,0,0,0,0],[0,0,0,1,0]])],

columnblocks:=[1,1,2])]

This tells us that P2
∂2−→ P1 in the minimal resolution is

e1B ⊕ e1B ⊕ e2B → e1B ⊕ e2B

where (e1, 0, 0) 7→ (a, 0), (0, e1, 0) 7→ (cb, ba), and (0, 0, e2) 7→ (0, d)

We repeat the described process some n times. The result is a portion

Pn
∂n−→ Pn−1 −→ · · · ∂2−→ P1

∂1−→ P0 −→ S −→ 0

of the minimal projective resolution of S.

Step 2: Chain Maps The next step is to find a minimal generating set for

un
k=0 ui,j Extk

B (S1, Sj) .

The main command for this procedure is called ExtAlgebra(basicalg,n) (respectively

CohomologyGenerators). Recall that we are looking at the cohomology and Ext-

algebra of simple modules and that we have minimal projective resolutions and thus

the Yoneda products of the cohomology elements are given as compositions of the

chain maps by Proposition 2.5.

Once we have computed the projective resolutions of the simple modules up to

degree n, we know the dimension of Extr
B (Si, Sj), 0 ≤ r ≤ n, as a vector space over

k. This is simply the number of times the PIM ejB corresponding to the simple

124

module Sj appears in the resolution of Si. With respect to our data, it is just

the number of times the number of the corresponding simple module appears in

module.columnblocks. The command HomologyDims(basicalg,resolution,simple,n)

computes these dimensions.

We have described the procedure to find the minimal set of generators in Al-

gorithm 2.4.1 on page 72. This entire process relies on computing chain maps. The

calculation of a chain map is a straightforward application of linear algebra. The func-

tion is ComputeChainMaps (basicalg,projres1,projres2,degree,ende,map). Once again,

the actual map between the projective modules is computed by knowing the images

of the generators. Obtaining the images of the generators is a matter of solving a

system of linear equations. That is, suppose for cohomology element ι in degree n we

have computed the chain map to degree r. So in the diagram below,

· · · // Pn+r+1
∂n+r+1//

ιr+1

��

Pn+r
//

ιr
��

· · ·

· · · // P
′
r+1

∂
′
r+1 // P

′
r

// · · ·

(4.1)

for each idempotent ei of Pn+r+1, we must solve the equation ∂
′
r+1 (u) = ιr∂n+r+1 (ei)

for an element u of Pr+1. This answer is not unique and any solution will do.

We now describe how to implement this algorithm into GAP in more detail. Recall

we are in the situation in (4.1) and want to compute ιr+1 such that the diagram

commutes. That is we want to compute a lift ιr+1 such that ιr◦∂n+r+1 = ∂
′
r+1◦ιr+1. We

first compute the composition ιr ◦ ∂n+r+1 with CompositionOfHoms(basicalg, mod1,

mod2). For each of the idempotents ei ∈ Pn+r+1, we would like to consider all

possible maps to the idempotents ej of Pr. Therefore we can look at the basis of the

projective module eiB of Pn+r+1 and look up which of these words in the generators of

the algebra end in the PIM corresponding to idempotent ej . The basis B is ordered

by PIMs such that for each b1, b2 ∈ BeiB we have τ (b1) ≥ τ (b2). Therefore we may use

the Cartan matrix in the entry basicalg.cartan[i][j] to determine which words

125

in eiB end in ejB. We then apply the map ∂
′
r+1 to these words. To do this we

use the low level routine ApplyTreeToBlockVectorRestrictedToIdempotent. We

then record the vector that we returned for each of the idempotents in Pn+r+1 as

a matrix. Then for each of the images of the generators of ιr ◦ ∂n+r+1 we need to

solve the corresponding system of equations. To do this we use the GAP routine

SolutionMat(matrix,vector).

To illustrate this important procedure we give an example. Suppose we have

η1,2,1 ∈ Ext1
B (S1, S2) and γ2,2,2 ∈ Ext2

B (S2, S2). We would like to compute γ2,2,2 ·η1,2,1.

We therefore are looking at the map:

e1B ⊕ e1B ⊕ e1B ⊕ e2B
∂3 //

ι2
��

e1B ⊕ e1B ⊕ e2B
∂2 //

ι1
��

e1B ⊕ e2B
∂1 //

ι0
��

η1,2,1

%%LLLLLLLLLLL e1B
ε // S1

e1B ⊕ e2B ⊕ e2B

γ2,2,2

��

d2 // e1B ⊕ e2B
d1 // e2B

ε // S2
// 0

S2

The map ι0 is just the standard map below:

gap>iota0;

rec(columnblocks:=[1,2],rowblocks:=[2],

generators:=[

rec(blocks:=[2],blockvector:=[[0,0,0,0,0]]),

rec(blocks:=[2],blockvector:=[[0,0,1,0,0]])])

We would like to lift to ι1 such that the corresponding square commutes. The first

thing that we do is to compute ι0 ◦ ∂2.

ι0 ◦ ∂2 (e1, 0, 0) = ∂2 (a, 0) = 0

ι0 ◦ ∂2 (0, e1, 0) = ∂2 (cb, ba) = ba

ι0 ◦ ∂2 (0, 0, e2) = ∂2 (0, d) = d

In GAP this is:

126

gap>CompositionOfHoms(basicalg,resolution1[2],iota0);

rec(columnblocks:=[1,1,2],rowblocks:=[2],

generators:=[

rec(blocks:=[2],blockvector:=[[0,0,0,0,0]]),

rec(blocks:=[2],blockvector:=[[0,1,0,0,0]]),

rec(blocks:=[2],blockvector:=[[0,0,0,1,0]])])

The next step is to compute possible images of the map d1 ◦ ι1. We do this on a PIM

by PIM basis. In the projective module e1B ⊕ e1B ⊕ e2B we first look at possible

maps under ι1 to e1B ⊕ e2B. We consider the possibilities for (e1, 0, 0). To be a

possibility we must consider all words γ that start in PIM e1B and end in PIM e1B,

i.e. γ ∈ e1B ∩ Be1. This information is conveniently stored in the Cartan matrix,

C1,1. We look at C1,1 = 4 and know there are four such words. They are e1, a, cb,

and acb, the first four entries in the basis information in the basic algebra for PIM 1a.

We then apply the map d1 to these words. The result is e1 7→ b, a 7→ ba, and cb 7→ 0.

Then we next consider the map under ι1 from e1B to e2B, i.e., all words in PIM 2a

(e2B) that end in PIM 1a (e1B). Looking up C2,1 we see that the first two entries

in PIM 2a satisfy this property. The words are b and ba. We then apply the map d1

and see that both b and ba map to 0. We know that under ι0 ◦ ∂2, (e1, 0, 0) 7→ 0 and

the first generator of ι1 is clearly 0. Next, we know that (0, e1, 0) 7→ ba. We need to

write this as a linear combination of the words that we have seen. We therefore want

ι1 (0, e1, 0) = a and obtain the generator

columnblocks:=[1,1,2]

rec(blocks:=[1,2],blockvector:=[[0,1,0,0,0,0],[0,0,0,0,0]])

The last thing that we must compute are the possible images of e2. We look for

both words that begin in e1B and e2B and end in e2B. Words that start in PIM

1a and end in PIM 2a are c and ac. Applying the map d2 we end up with c 7→ bc

127

and ac 7→ bac = bc. Words that start in PIM 2a and end in PIM 2a are e2, d, and

bc. The respective images under d1 are e2 7→ d, d 7→ bc, and bc 7→ 0. We know that

ι0 ◦ ∂2 (0, 0, e2) = d and so clearly we must send (0, 0, e2) to (0, e2). The final result

for ι1 is:

gap>iota1;

rec(rowblocks:=[1,2],columnblocks:=[1,1,2],

generators:=[

rec(blocks:=[1,2],blockvector:=[[0,0,0,0,0,0],[0,0,0,0,0]]),

rec(blocks:=[1,2],blockvector:=[[0,1,0,0,0,0],[0,0,0,0,0]]),

rec(blocks:=[1,2],blockvector:=[[0,0,0,0,0,0],[0,0,1,0,0]])])

We now repeat the same process to lift ι1 to ι2. We have that

ι1 ◦ ∂3 (e1, 0, 0, 0) = ι1 (a, 0, 0) = 0

ι1 ◦ ∂3 (0, e1, 0, 0) = ι1 (cb, a, 0) = aa = 0

ι1 ◦ ∂3 (0, 0, e1, 0) = ι1 (0, 0, b) = b

ι1 ◦ ∂3 (0, 0, 0, e2) = ι1 (0, c, d) = ac+ d

We now do the same lifting process PIM by PIM. We first consider the words that

start in PIM 1a and end in PIM 1a. They are: e1, a, cb and acb. We apply the map

d2 to the 1st slot and end up with images b, ba, 0, and 0 respectively. Thus we know

that we want ι1 (0, 0, b) = b and so we map (0, 0, e1, 0) to (0, 0, e2). We lastly consider

words starting in e2B and ending in e1B. These are b and ba. We apply d2 to the

second slot and get acb + cb and acb and to the third slot and get 0 and acb. So we

know that we have ι2 (0, 0, e1, 0) = (e1, 0, 0). We also know that both (e1, 0, 0, 0) and

(e1, 0, 0, 0) map to (0, 0, 0).

128

We now repeat the process for words that start in PIM 1a and end in PIM 2a and

also that start in PIM 2a and end in PIM 2a.

• Start in PIM 1a and end in PIM 2a: {c, ac} 7→ {bc, bc}.

• Start in PIM 2a and end in PIM 2a: {e2, d, bc} 7→ {ac + c, d, 0} for image of

second slot of d2.

• Start in PIM 2a and end in PIM 2a: {e2, d, bc} 7→ {c + d, bc, bc} for image of

third slot of d2.

As we know that ι1 ◦ ∂3 (0, 0, 0, e2) = ac + d, and we want the diagram to commute,

we need a linear combination of the items above to give us this. We thus need

(ac + c) + (c + d) = ac + d and so we need to send (0, 0, 0, e2) to (0, e2, e2). In GAP

the record is:

gap>iota2;

rec(rowblocks:=[1,2,2],columnblocks:=[1,1,1,2],

generators:=[

rec(blocks:=[1,2,2],

blockvector:=[[0,0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0]]),

rec(blocks:=[1,2,2],

blockvector:=[[0,0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0]]),

rec(blocks:=[1,2,2],

blockvector:=[[1,0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0]]),

rec(blocks:=[1,2,2],

blockvector:=[[0,0,0,0,0,0],[0,0,1,0,0],[0,0,1,0,0]])])

Our last stage in the above is at each stage of our lift, to apply all standard basis

elements to map to all possible simple modules. First we gather some important data.

We are looking to compose a generator η1,2,1 ∈ Ext1
B (S1, S2) with all compatible

129

γ2,1,1 ∈ Ext1
B (S2, S1) and γ2,2,1 ∈ Ext1

B (S2, S2). We first note the dimensions of the

vector spaces we are considering: Dimk Ext1
B (S2, S1) = 1 and Dimk Ext1

B (S2, S2) = 1.

Therefore we compute both γ2,1,1 ◦ ι1 and γ2,2,1 ◦ ι1 and record the results as elements

of Ext2
B (S1, S1) and Ext2

B (S1, S2) respectively. We then move on to the next level:

Dimk Ext1
B (S2, S1) = 1 and Dimk Ext1

B (S2, S2) = 2. So we take γ2,1,2 ∈ Ext2
B (S2, S1)

and compute γ2,1,2 ◦ ι2 which gives us γ2,1,2η1,2,1 ∈ Ext3
B (S1, S1). Similarly as the

dimension of Ext1B (S2, S2) = 2 we take the standard basis γ2,2,2 and ρ2,2,2 and compute

γ2,2,2 ◦ ι2 and ρ2,2,2 ◦ ι2. We end up with elements of Ext3
B (S1, S2).

After we have completed finding the generators by using the chain map lifts, we

have a record of all generators out to degree n and also all Yoneda compositions of the

generators ηi and the standard basis of the vector space. The next thing we would like

to do is to rewrite the standard basis in terms of products in the generators. This will

give a nice basis in terms of finding all of the relations for the generators and giving a

Gröbner basis presentation of the ideal of the generators. The standard approach is

to compute all possible products of monomials up to degree n in the generators. Then

the relations in degree n form a basis for the space of relations among the vectors

of the monomials in ks. This is again the null space of the matrix whose rows are

the vectors of the monomials. Computing the null space is a standard application

of linear algebra. The next step would be to run a standard Buchberger algorithm

to reduce this list of generators and have a Gröbner basis for the relations for later

computational purposes. However as n grows the possible products in the generators

gets out of hand pretty quickly. That is why we prefer the alternative Gröbner basis

approach.

Step 3: Spin Up Basis in Generators: We have computed all of the generators

and their products up to a given degree n. We have a list of generators {η1, ..., ηm}

for the Ext-algebra E(B) up to degree n. Our goal is to produce a graded k-basis for

E(B). We first initialize the new basis B := {η1, ..., ηm}. For each ηi ∈ {η1, ..., ηm} =

B and each r ∈ {1, ...,m} we compute the product ηiηr. If ηiηr is not contained

130

in the span of B, then we append ηiηr to B. We continue this procedure until it

terminates and, i.e. we no longer find any new products. We know that this process

is guaranteed to terminate as Exti
B (Si, Sj) is finite for each i and we are only carrying

out this procedure until we reach i = n . We know that we will find a basis because

we know that we have a list of generators of the Ext-algebra. The algorithm that is

used is Algorithm 2.4.2.

Step 4: Relations and Gröbner Basis We are given a basis for the algebra and

a record of all of the generators on the basis. We wish to find all relations between

the generators and present the ideal I that they generate as a Gröbner basis G. As

we have a basis given in terms of monomials in the generators and the action of all

of the generators on this basis, we are in the situation we have had before to use

our Alternate Gröbner Basis Algorithm 3.1.3. We use the same algorithm adapted to

Ext-algebra and the routine is called GrobnerBasisForExt.

We now have a record of all products in the Ext-algebra, the generators, and

relations so that we have an isomorphism between the Ext-algebra to a certain degree

and the quotient of our given path algebra by the relations.

What remains to be seen is that n has been chosen large enough so that we have

found all of the generators η1, ..., ηr and relations needed to have an isomorphism

E (kG) ∼= k〈η1, ..., ηr〉/〈G〉.

This remains to be investigated as more theoretical results are needed in the case of

a basic algebra.

131

Chapter 5

Results

In this chapter, we present the results of some of our calculations for the cohomology

ring and Ext-algebra of various group algebras for the principal block of specific groups

over various characteristics. Since we are only concerned with principal blocks, for

the rest of this chapter, all results are only for the principal block of kG. We use the

notation from the Atlas of Finite Groups [CCN+85] to list each group.

The first section will contain a brief summary of which cohomology rings and

Ext-algebras are previously known for specific group algebras in the literature.

5.1 Data Summary

There are not many sources where Ext-algebras have been recorded. The most notable

is in Benson and Carlson [BC87] for group algebras. In [Gen01, GO02, Gen02, GK03,

GK04], Generalov et al. give generators and relations of the Ext-algebra for a infinite

families of dihedral algebras. One case includes groups with dihedral Sylow subgroups.

More results are known and have been published for cohomology rings. Most

of these results such as the book by Adem and Milgram [AM04] are specifically

done for cohomology in characteristic 2. Among the sporadic groups that have been

completed for cohomology in characteristic 2 are M22 by Adem-Milgram [AM95], the

cohomology ofM23 by Milgram [Mil00], McL by Adem-Milgram [AM97], Ly by Adem

et al. [AKMU98], and that of J2, J3 by Carlson-Maginnis-Milgram [CMM99]. For

the Higman Sims group HS, the cohomology of the 2-Sylow subgroup was calculated

in [ACKM01]. Cohomology rings such as that for the Held group He and M24 in

characteristic 2 represent a new level of complexity and have not yet been determined.

For classical groups over fields of finite characteristic see Priddy and Fiedorowicz

132

[FP78]. For the specific case of SL (2, pn) see Carlson [Car83].

In addition to these results, theoretical results concerning the cohomology ring

and Ext-algebras for group algebra kG in characteristic p where p divides the group

order of G only once are well known. The cohomology ring in this setting is described

in Green [Gre74] and the Ext-algebra case in Brown [Bro99]. We include our results

for these cases mainly as verifications that our programs are running correctly.

The following tables contain the references for previously known cohomology rings

and Ext-algebras that we have used to verify that our programs are working correctly.

Note that, for the Ext-algebra computations, the generators and relations for the full

Ext-algebra are not given in [BC87]. All that is supplied is Ext∗kG (S, S) for all of the

simple modules in the principal block.

The following tables contain the references for previously known cohomology rings

and Ext-algebras, as well as the page numbers for our results in this dissertation.

Group Prime Reference Page

A6 2 [AM04, pages 209-211] 136
A7 2 [BC87, page 111] 137
A8 2 [AM04, pages 209-211] 139
A10 2 [AM04, pages 209-211] 142
S4 2 [BC87, page 112] 144
S6 2 [AM04, pages 203-206] 146
S8 2 [AM04, pages 203-206] 148
M11 2 [AM04, page 247] 152
M12 2 [AM04, page 255] 154
J1 2 [AM04, page 247] 156

Table 5.1. Some Known Cohomology Rings

5.2 Data Description

In the results we present, we refer to the computation of the cohomology ring and

Ext-algebra. By this we mean that we have partially calculated the cohomology ring

133

Group Prime Reference Page

A6 3 [BC87, page 107] 136
A7 2 [BC87, page 111] 137
S4 2 [BC87, page 112] 144
M11 2 [BC87, pages 97-107] 152
L3 (3) 2 [BC87, page 111] 170

Table 5.2. Some Known Ext-Algebras

and Ext-algebra up to a chosen degree n. For most of these groups, the complete

description of the cohomology ring and Ext-algebra would be long and not useful

to read. Instead, we include a list of generators for each. When small enough, we

also include the Gröbner basis G for ideal of relations among the generators. For

the cohomology ring we denote the generators as xn where n is the degree of the

generator. If there is more than one generator of a given degree, we use the next

available letter in the alphabet. For the Ext-algebra we refer to the generators as

ηi,j,k which indicates ηi,j,k ∈ Extk (Si, Sj). When more then one generator is found in

Extk (Si, Sj) we use another Greek letter such as ξi,j,k.

For denoting elements of a finite field, we use the notation Z(pd) to denote the gen-

erator of multiplicative group of the finite field with pd elements. See the GAP webpage

http://www.gap-system.org/Manuals/doc/htm/ref/CHAP057.htm for more infor-

mation on how the specific generator is chosen.

For presenting the results of our cohomology ring calculations, we use the notation

H∗ (G, k) ∼= k [x1, ..., xm] /〈G〉

to mean the quotient of the graded-commutative polynomial ring where

xi · xj = (−1)i·j xj · xi.

Note that for some of our computations, we include the results of the Ext-algebra

up to degree n which is smaller than the degree of the corresponding cohomology ring

calculation. This is due to the fact that an Ext-algebra computation has many more

134

computations than the cohomology ring as we need to compute for all possible pairs

(Si, Sj) versus just for (k,k).

5.3 Alternating Groups

5.3.1 A4

The order of A4 is 22 · 3 = 12.

Characteristic 2: For the splitting field F4 with degree of computation n = 40:

H∗ (A4,F4) ∼= F4 [x2, x3, y3] /〈x3
2 + x3y3〉.

The number of generators is 3 and |G| = 1.

The Ext-algebra computation for n = 40 produces the following 6 generators:

η1,2,1, η1,3,1, η2,1,1, η2,3,1, η3,1,1, η3,2,1,

with G the set of size 6:

η3,1,1η1,3,1 + η2,1,1η1,2,1, η3,2,1η2,3,1 + η1,2,1η2,1,1, η2,3,1η3,2,1 + η1,3,1η3,1,1,

η1,3,1η3,1,1η2,3,1 + η2,3,1η1,2,1η2,1,1, η1,2,1η2,1,1η3,2,1 + η3,2,1η1,3,1η3,1,1,

η2,1,1η1,2,1η3,1,1η2,3,1 + η3,1,1η2,3,1η1,2,1η2,1,1.

Characteristic 3: For the splitting field F3 with degree of computation n = 100:

H∗ (A4,F3) ∼= F3 [x1, x2] /〈x2
1〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 100 produces the following 2 generators:

η1,1,1, η1,1,2,

with G the set of size 2:

η2
1,1,1, η1,1,1η1,1,2 + 2 · η1,1,2η1,1,1.

135

5.3.2 A5

The order of A5 is 22 · 3 · 5 = 60.

Characteristic 2: For the splitting Field F4 with degree of computation n = 100:

H∗ (A5,F4) ∼= F4 [x2, x3, y3] /〈x3
2 + x3y3〉.

The number of generators is 3 and |G| = 1.

The Ext-algebra computation for n = 100 produces the following 9 generators:

η1,1,2, η1,1,3, ξ1,1,3, η1,2,1, η1,3,1, η2,1,1, η2,2,3, η3,1,1, η3,3,3,

where |G| = 20 and the largest relation found is of degree 6.

Characteristic 3: For the splitting field F3 with degree of computation n = 100:

H∗ (A5,F3) ∼= F3 [x3, x4] /〈x2
3〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 100 produces the following 4 generators:

η1,2,1, η1,2,2, η2,1,1, η2,1,2,

with G the set of size 4:

η2,1,1η1,2,1, η1,2,1η2,1,1, η2,1,1η1,2,2 + 2 · η2,1,2η1,2,1, η1,2,1η2,1,2 + 2 · η1,2,2η2,1,1.

Characteristic 5: For the splitting Field = F5 with degree of computation n = 100:

H∗ (A5,F5) ∼= F5 [x3, x4] /〈x2
3〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 100 produces the following 5 generators:

η1,1,4, η1,2,1, η2,1,1, η2,2,1, η2,2,4,

136

with G the set of size 7:

η2,1,1η1,2,1, η2,2,1η2,2,1 + Z(5)3 · η1,2,1η2,1,1, η1,2,1η2,1,1η2,2,1 + Z(5)2 · η2,2,1η1,2,1η2,1,1,

η2,1,1η2,2,1η1,2,1η2,1,1, η1,2,1η1,1,4 + Z(5) · η2,2,4η1,2,1,

η2,1,1η2,2,4 + Z(5)3 · η1,1,4η2,1,1, η2,2,1η2,2,4 + Z(5)2 · η2,2,4η2,2,1.

5.3.3 A6

The order of A6 is 23 · 32 · 5 = 360.

Characteristic 2: For the splitting field F2 with the degree of computation n = 40:

H∗ (A6,F2) ∼= F2 [x2, x3, y3] /〈x3y3〉.

The number of generators is 3 and |G| = 1.

The Ext-algebra computation for n = 40 produces the following 9 generators:

η1,1,2, η1,1,3, ξ1,1,3, η1,2,1, η1,3,1, η2,1,1, η2,2,3, η3,1,1, η3,3,3,

where |G| = 20 and the largest relation found is of degree 6.

Characteristic 3: For the splitting field F9 with degree of computation n = 30:

H∗ (A6,F9) ∼= F9 [x2, x3, y3, x4, x7, y7, x8, y8] /〈G〉.

where G is the set:

x2
2, x2x3, x2y3, x2x7, x2y7, x

2
3, x3y3 + Z(32)3 · x2x4, x

2
4x8 + Z(3) · y2

8 + Z(32)2 · x8y8,

x3x7 + x2x8 + x2y8, x3y7 + Z(32)6 · x2y8, y
2
3, y3x7 + Z(32)3 · x2y8,

y3y7 + Z(3) · x2y8, x4x7 + Z(32) · y3y8 + x3y8 + Z(32) · y3x8,

x4y7 + Z(32)7 · y3y8 + Z(32) · x3y8, x2x4x8 + Z(32)5 · x7y7, y
2
7, x

2
7,

y3x4x8 + Z(32)5 · x7y8 + y7y8,

x3x4x8 + Z(32)5 · y7x8 + Z(32)7 · x7y8 + Z(32)5 · y7y8.

137

The number of generators is 8 and |G| = 20.

The Ext-algebra computation for n = 30 produces the following 26 generators:

η1,1,3, η1,1,8, η1,4,1, η2,2,3, ξ2,2,3, η2,2,4, η2,2,8, ξ2,2,8, η2,4,1, ξ2,4,1, η2,4,6, ξ2,4,6, η3,3,3,

η3,3,8, η3,4,1, η4,1,1, η4,2,1, ξ4,2,1, η4,2,6, ξ4,2,6, η4,3,1, η4,4,3, ξ4,4,3, η4,4,4, η4,4,8, ξ4,4,8,

where |G| = 185 and the largest relation found is of degree 30.

Characteristic 5: For the splitting field F5 with degree of computation n = 100:

H∗ (A6,F5) ∼= F5 [x3, x4] /〈x2
3〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 100 produces the following 5 generators:

η1,1,4, η1,2,1, η2,1,1, η2,2,1, η2,2,4,

with G the set of size 7:

η2,1,1η1,2,1, η2,2,1η2,2,1 + η1,2,1η2,1,1, η1,2,1η2,1,1η2,2,1 + Z(5)2 · η2,2,1η1,2,1η2,1,1,

η2,1,1η2,2,1η1,2,1η2,1,1, η1,2,1η1,1,4 + η2,2,4η1,2,1,

η2,1,1η2,2,4 + η1,1,4η2,1,1, η2,2,1η2,2,4 + Z(5)2 · η2,2,4η2,2,1.

5.3.4 A7

The order of A7 is 23 · 32 · 5 · 7 = 2520.

Characteristic 2: For the splitting field F2 with degree of computation n = 40:

H∗ (A7,F2) ∼= F2 [x2, x3, y3] /〈x3y3〉.

The number of generators is 3 and |G| = 1.

The Ext-algebra computation for n = 40 produces the following 8 generators:

η1,1,2, η1,1,3, η1,2,1, η1,3,1, η2,1,1, η2,2,1, η3,1,1, η3,3,3,

where |G| = 33 and the largest relation found is of degree 40.

138

Characteristic 3: For the splitting field F9 with degree of computation n = 30:

H∗ (A7,F9) ∼= F9 [x2, x3, y3, x4, x7, y7, x8, y8] /〈G〉.

The number of generators is 8 and |G| = 20. The set G is identical to that of F9A6.

The Ext-algebra computation for n = 30 produces the following 25 generators:

η1,1,3, ξ1,1,3, η1,1,4, η1,1,8, ξ1,1,8, η1,2,1, ξ1,2,1, η1,3,4, η1,4,4, η2,1,1, ξ2,1,1, η2,3,1, η2,3,2,

η2,4,1, η2,4,2, η3,1,4, η3,2,1, η3,2,2, η3,4,3, η3,4,4, η4,1,4, η4,2,1, η4,2,2, η4,3,3, η4,3,4,

where |G| = 240 and the largest relation found is of degree 30.

Characteristic 5: For the splitting field F5 with degree of computation n = 100:

H∗ (A7,F5) ∼= F5 [x7, x8] /〈x2
7〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 100 produces the following 10 generators:

η1,3,1, η1,4,4, η2,3,1, η2,3,4, η2,4,1, η3,1,1, η3,2,1, η3,2,4, η4,1,4, η4,2,1,

with G the set of size 15:

η3,1,1η1,3,1, η4,2,1η2,4,1 + Z(5)3 · η3,2,1η2,3,1, η2,3,1η3,2,1 + η1,3,1η3,1,1,

η2,4,1η4,2,1, η2,4,1η3,2,1η2,3,1, η3,2,1η2,3,1η4,2,1, η3,2,1η1,3,1η3,1,1η2,3,1,

η2,4,1η3,2,1η1,3,1η3,1,1, η1,3,1η3,1,1η2,3,1η4,2,1, η4,2,1η1,4,4 + Z(5) · η3,2,4η1,3,1,

η3,1,1η2,3,4 + Z(5)2 · η4,1,4η2,4,1,

η3,2,1η2,3,4 + Z(5)2 · η3,2,4η2,3,1, η2,3,1η3,2,4 + Z(5)2 · η2,3,4η3,2,1,

η2,4,1η3,2,4 + Z(5)2 · η1,4,4η3,1,1, η1,3,1η4,1,4 + Z(5)3 · η2,3,4η4,2,1.

139

Characteristic 7: For the splitting Field F7 with degree of computation n = 100:

H∗ (A7,F7) ∼= F7 [x5, x6] /〈x2
5〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 100 produces the following 8 generators:

η1,1,6, η1,3,1, η2,2,1, η2,2,6, η2,3,1, η3,1,1, η3,2,1, η3,3,6,

with G the set of size 14:

η3,1,1η1,3,1, η3,2,1η2,3,1 + Z(7) · η2,2,1η2,2,1, η2,3,1η3,2,1 + Z(7) · η1,3,1η3,1,1,

η1,3,1η3,1,1η2,3,1 + Z(7)3 · η2,3,1η2,2,1η2,2,1, η2,2,1η2,2,1η3,2,1 + Z(7)3 · η3,2,1η1,3,1η3,1,1,

η3,1,1η2,3,1η2,2,1η2,2,1, η2,3,1η2,2,1η2,2,1η2,2,1η2,2,1, η2,2,1η2,2,1η2,2,1η2,2,1η2,2,1η2,2,1,

η1,3,1η1,1,6 + Z(7)5 · η3,3,6η1,3,1, η2,2,1η2,2,6 + Z(7)3 · η2,2,6η2,2,1,

η3,1,1η3,3,6 + Z(7) · η1,1,6η3,1,1,η3,2,1η3,3,6 + Z(7)3 · η2,2,6η3,2,1,

η3,1,1η2,3,1η2,2,1η3,2,1η1,3,1η3,1,1,η2,3,1η2,2,6 + Z(7)3 · η3,3,6η2,3,1.

5.3.5 A8

The order of A8 is 26 · 32 · 5 · 7 = 20160.

Characteristic 2: For the splitting field F2 with degree of computation n = 14:

H∗ (A8,F2) ∼= F2 [x2, x3, y3, x4, x5, x6, y6, x7, y7] /〈G〉.

140

where G is the set:

x3y3, x3y7 + x2x3x5, y3x5, y3x6, y3y6, y3x7, y3y7, x
2
2x5 + x2y7,

x2
5 + x2

2x6 + x2
2y6 + x2

2x
2
3 + x2x3x5 + x3x7, x5x7 + x2

2x3x5 + x3x4x5,

x5y7 + x3
2x6 + x3

2y6 + x3
2x

2
3 + x2

2x3x5 + x2x3x7,

x2x3x4 + x2x7 + x3
2x3, x2x4y7 + x2

2x4x5,

x2x4x7 + x3
2x7 + x5

2x3 + x2x3x
2
4,

x6y6 + x3
2x6 + x3

2y6 + x3
2x

2
3 + x2

2x3x5 + x2x3x7 + x2x4x6 + x2x4y6 + x3x4x5,

x6y7 + x2x5x6, y6x7 + x2
2x3y6 + x3x4y6,

x2
3x4 + x2

2x
2
3 + x3x7, x7y7 + x3

2x3x5 + x2x3x4x5,

x3x4x7 + x4
2x

2
3 + x2

2x3x7 + x2
3x

2
4.

The number of generators is 9 and |G| = 20.

The Ext-algebra computation for n = 8 produces 42 generators where the largest

generator found is of degree 8 and |G| = 380.

Characteristic 3: For the splitting field F3 with degree of computation n = 30:

H∗ (A8,F3) ∼= F3 [x3, x4, x7, x8] /〈x2
3, x

2
7〉.

The number of generators is 4 and |G| = 2.

The Ext-algebra computation for n = 30 produces the following 20 generators:

η1,3,1, η1,3,2, η1,4,1, η2,3,1, η2,3,2, η2,4,1, η3,1,1, η3,1,2, η3,2,1, η3,2,2,

η3,5,1, η3,5,2, η4,1,1, η4,2,1, η4,4,3, η4,4,8, η4,5,2, η5,3,1, η5,3,2, η5,4,2,

where |G| = 97 and the largest relation found is of degree 30.

Characteristic 5: For the splitting field F5 with degree of computation n = 100:

H∗ (A8,F5) ∼= F5 [x7, x8] /〈x2
7〉.

141

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 100 produces the following 10 generators:

η1,3,1, η1,4,4, η2,3,1, η2,3,4, η2,4,1, η3,1,1, η3,2,1, η3,2,4, η4,1,4, η4,2,1,

where |G| = 15 and the largest relation found is of degree 5.

Characteristic 7 For the splitting field F7 with degree of computation n = 100:

H∗ (A8,F7) ∼= F7 [x5, x6] /〈x2
5〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 100 produces the following 8 generators:

η1,1,6, η1,2,1, η1,3,1, η2,1,1, η2,2,1, η2,2,6, η3,1,1, η3,3,6,

where |G| = 14 and the largest relation found is of degree 7.

5.3.6 A9

The order of A9 is 26 · 34 · 5 · 7 = 181440.

Characteristic 2: For the splitting field F2 with degree of computation n = 14:

H∗ (A9,F2) ∼= F2 [x2, x3, y3, x4, x5, x6, y6, x7, y7] /〈G〉.

The number of generators is 9 and |G| = 20

Characteristic 3: For the splitting field F3 with degree of computation n = 20:

H∗ (A9,F3) ∼= F3 [x3, y3, x4, y4, x7, y7, x8, y8, z8, x9, x11, x12, y12, x13, x17, x18] /〈G〉.

The number of generators is 16 and |G| = 55.

The Ext-algebra computation for n = 15 produces 74 generators where the largest

generator found is of degree 15 and |G| = 1434.

142

Characteristic 5: For the splitting field F5 with degree of computation n = 100:

H∗ (A9,F5) ∼= F5 [x7, x8] /〈x2
7〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 100 produces the following 10 generators:

η1,2,1, η1,2,4, η1,4,1, η2,1,1, η2,1,4, η2,3,1, η3,2,1, η3,4,4, η4,1,1, η4,3,4,

where |G| = 16 and the largest relation found is of degree 5.

Characteristic 7 For the splitting field F7 with degree of computation n = 100:

H∗ (A9,F7) ∼= F7 [x11, x12] /〈x2
11〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 100 produces the following 16 generators:

η1,3,1, η1,3,6, η1,5,1, η2,3,1, η2,5,6, η2,6,1, η3,1,1, η3,1,6,

η3,2,1, η4,5,1, η4,6,6, η5,1,1, η5,2,6, η5,4,1, η6,2,1, η6,4,6,

where |G| = 32 and the largest relation found is of degree 7.

5.3.7 A10

The order of A10 is 27 · 34 · 52 · 7 = 1814400.

Characteristic 2: For the splitting field F2 with degree of computation n = 12:

H∗ (A10,F2) ∼= F2 [x2, x3, y3, x4, x5, y5, y6, x7] /〈G〉.

where G is given by:

x3x7 + x2
2x

2
3 + x2x3x5, y3x5 + x2x3y3 + x3y5, y3x6,

y3x7 + x2x3y5, x5y5 + x2
2x3y3 + x3y3x4, y5x6, y5x7 + x3

2x3y3 + x2
2x3y5 + x2x3y3x4,

x2
5 + x2

2x6 + x2
2x

2
3 + x2x3x5 + x2

3x4,

x5x7 + x3
2x6 + x3

2x
2
3 + x2x

2
3x4, x

3
2x3 + x2x7 + x2

2x5.

143

The number of generators is 8 and |G| = 10.

Characteristic 3: For the splitting field F3 with degree of computation n = 20:

H∗ (A10,F3) ∼= F3 [x3, y3, x4, y4, x7, y7, x8, y8, z8, x9, x11, x12, y12, x13, x17, x18] /〈G〉.

The number of generators is 16 and |G| = 55.

The Ext-algebra computation for n = 15 produces 69 generators where the largest

generator found is of degree 15 and |G| = 1604.

Characteristic 5: For the splitting field F5 with degree of computation n = 40:

H∗ (A10,F5) ∼= F5 [x6, x7, y7, x8, x15, y15, x16, y16] /〈G〉.

The number of generators is 8 and |G| = 20.

The Ext-algebra computation for n = 20 produces 100 generators where the largest

generator found is of degree 16 and |G| = 1177.

Characteristic 7 For the splitting field F7 with degree of computation n = 100:

H∗ (A10,F7) ∼= F7 [x11, x12] /〈x2
11〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 40 produces the following 16 generators:

η1,2,1, η1,4,6, η2,1,1, η2,3,1, η2,6,6, η3,2,1, η3,5,1, η3,5,6,

η4,1,6, η4,6,1,η5,3,1,η5,3,6, η5,6,1, η6,2,6, η6,4,1, η6,5,1,

where |G| = 27 and the largest relation found is of degree 7.

5.4 Symmetric Groups

5.4.1 S4

The order of S4 is 23 · 3 = 24.

144

Characteristic 2: For the splitting field F2 with degree of computation n = 100:

H∗ (S4,F2) ∼= F2 [x1, x2, x3] /〈x1x3〉.

The number of generators is 3 and |G| = 1.

The Ext-algebra computation for n = 40 produces the following 5 generators:

η1,1,1, η1,1,2, η1,2,1, η2,1,1, η2,2,1,

where |G| = 26 and the largest relation found is of degree 40.

Characteristic 3: For the splitting field F3 with degree of computation n = 100:

H∗ (S4,F3) ∼= F3 [x3, x4] /〈x2
3〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 100 produces the following 4 generators:

η1,2,1, η1,2,2, η2,1,1, η2,1,2,

where the set G is:

η2,1,1η1,2,1, η1,2,1η2,1,1, η2,1,1η1,2,2 + 2 · η2,1,2η1,2,1, η1,2,1η2,1,2 + 2 · η1,2,2η2,1,1.

5.4.2 S5

The order of S5 is 23 · 3 · 5 = 120.

Characteristic 2: For the splitting field F2 with degree of computation n = 40:

H∗ (S5,F2) ∼= F2 [x1, x2, x3] /〈x1x3〉.

The number of generators is 3 and |G| = 1.

The Ext-algebra computation for n = 40 produces the following 6 generators:

η1,1,1, η1,1,2, η1,1,3, η1,2,1, η2,1,1, η2,2,3,

where |G| = 29 and the largest relation found is of degree 40.

145

Characteristic 3: For the splitting field F3 with degree of computation n = 100:

H∗ (S5,F3) ∼= F3 [x3, x4] /〈x2
3〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 100 produces the following 4 generators:

η1,2,1, η1,2,2, η2,1,1, η2,1,2,

where G is also the same as in F3S4. We have an isomorphism of Ext-algebras to

degree 100.

Characteristic 5: For the splitting field F5 with degree of computation n = 100:

H∗ (S5,F5) ∼= F5 [x7, x8] /〈x2
7〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 100 produces the following 10 generators:

η1,2,1, η1,3,4, η2,1,1, η2,4,1, η2,4,4, η3,1,4, η3,4,1, η4,2,1, η4,2,4, η4,3,1,

with G the set of size 15:

η2,1,1η1,2,1, η4,2,1η2,4,1 + Z(5) · η1,2,1η2,1,1, η4,3,1η3,4,1, η3,4,1η4,3,1 + η2,4,1η4,2,1,

η2,4,1η4,2,1η3,4,1, η4,3,1η2,4,1η4,2,1, η4,3,1η2,4,1η1,2,1η2,1,1,

η1,2,1η2,1,1η4,2,1η3,4,1, η2,4,1η1,2,1η2,1,1η4,2,1, η3,4,1η1,3,4 + Z(5)2 · η2,4,4η1,2,1,

η4,2,1η2,4,4 + Z(5)3 · η4,2,4η2,4,1, η4,3,1η2,4,4 + Z(5)3 · η1,3,4η2,1,1,

η1,2,1η3,1,4 + Z(5) · η4,2,4η3,4,1,

η2,1,1η4,2,4 + Z(5)2 · η3,1,4η4,3,1, η2,4,1η4,2,4 + Z(5) · η2,4,4η4,2,1.

5.4.3 S6

The order of S6 is 24 · 32 · 5 = 720.

146

Characteristic 2: For the splitting field F2 with degree of computation n = 20:

H∗ (S6,F2) ∼= F2 [x1, x2, x3, y3] /〈G〉.

where G is

x6
1 + x3y3 + x1x2x3 + x3

1x3 + x4
1x2 + x3

1y3

The number of generators is 4 and |G| = 1.

The Ext-algebra computation for n = 20 produces the following 12 generators:

η1,1,1, η1,1,2, η1,1,3, ξ1,1,3, η1,2,1, η1,3,1, η2,1,1, η2,2,1, η2,2,3, η3,1,1, η3,3,1, η3,3,3,

where |G| = 131 and the largest relation found is of degree 20.

Characteristic 3: For the splitting field F3 with degree of computation n = 50:

H∗ (S6,F3) ∼= F3 [x3, x4, x7, x8] /〈x2
3, x

2
7〉.

The number of generators is 4 and |G| = 2.

The Ext-algebra computation for n = 30 produces the following 42 generators:

η1,1,3, η1,1,4, η1,1,8, η1,2,3, η1,2,8, η1,3,1, η1,3,6, η1,5,1, η1,5,6, η2,1,3, η2,1,8,

η2,2,3, η2,2,4, η2,2,8, η2,3,1, η2,3,6, η2,5,1, η2,5,6, η3,1,1, η3,1,6, η3,2,1, η3,2,6,

η3,3,3, η3,3,4, η3,3,8, η3,4,1, η3,5,3, η3,5,8, η4,3,1, η4,4,3, η4,4,8, η4,5,1,

η5,1,1, η5,1,6, η5,2,1, η5,2,6, η5,3,3, η5,3,8, η5,4,1, η5,5,3, η5,5,4, η5,5,8,

where |G| = 304 and the largest relation found is of degree 16.

Characteristic 5: For the splitting field F5 with degree of computation n = 100:

H∗ (S6,F5) ∼= F5 [x7, x8] /〈x2
7〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 30 produces the following 10 generators:

η1,2,1, η1,3,4, η2,1,1, η2,4,1, η2,4,4, η3,1,4, η3,4,1, η4,2,1, η4,2,4, η4,3,1,

where |G| = 15 and the largest relation found is of degree 5.

147

5.4.4 S7

The order of S7 is 24 · 32 · 5 · 7 = 5040.

Characteristic 2: For the splitting field F2 with degree of computation n = 14:

H∗ (S7,F2) ∼= F2 [x1, x2, x3, y3] /〈x1x2y3 + x3y3〉.

The number of generators is 4 and |G| = 1.

The Ext-algebra computation for n = 10 produces the following 11 generators:

η1,1,1, η1,1,2, η1,1,3, η1,2,1, η1,3,1, η2,1,1, η2,2,1, ξ2,2,1, η3,1,1, η3,3,1, η3,3,3,

where |G| = 81 and the largest relation found is of degree 10.

Characteristic 3: For the splitting field F3 with degree of computation n = 40:

H∗ (S7,F3) ∼= F3 [x3, x4, x7, x8] /〈x2
3, x

2
7〉.

The number of generators is 4 and |G| = 2.

The Ext-algebra computation for n = 20 produces the following 32 generators:

η1,1,3, η1,1,4, η1,1,8, η1,2,1, η1,3,1, η1,4,3, η1,4,8, η1,5,4, η2,1,1, η2,4,1, η2,5,1,

η2,5,2, η3,1,1, η3,4,1, η3,5,1, η3,5,2, η4,1,3, η4,1,8, η4,2,1, η4,3,1, η4,4,3, η4,4,4,

η4,4,8, η4,5,4, η5,1,4, η5,2,1, η5,2,2, η5,3,1, η5,3,2, η5,4,4, η5,5,3, η5,5,4,

where |G| = 266 and the largest relation found is of degree 20.

Characteristic 5: For the splitting field F5 with degree of computation n = 100:

H∗ (S7,F5) ∼= F5 [x7, x8] /〈x2
7〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 30 produces the following 10 generators:

η1,2,1, η1,4,4, η2,1,1, η2,3,1, η2,3,4, η3,2,1, η3,2,4, η3,4,1, η4,1,4, η4,3,1,

where |G| = 15 and the largest relation found is of degree 5.

148

Characteristic 7: For the splitting field F7 with degree of computation n = 100:

H∗ (S7,F7) ∼= F7 [x11, x12] /〈x2
11〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 30 produces the following 16 generators:

η1,2,1, η1,2,6, η1,5,1, η2,1,1, η2,1,6, η2,6,1, η3,4,6, η3,5,1,

η4,3,6, η4,6,1, η5,1,1, η5,3,1, η5,6,6, η6,2,1, η6,4,1, η6,5,6,

where |G| = 32 and the largest relation found is of degree 7.

5.4.5 S8

The order of S8 is 27 · 32 · 5 · 7 = 40320.

Characteristic 2: For the splitting field F2 with degree of computation n = 12:

H∗ (S7,F2) ∼= F2 [x1, x2, x3, y3, x4, x5, x6, x7] /〈G〉.

The number of generators is 8 and |G| = 14 with largest relation of degree 12.

The Ext-algebra computation for n = 6 produces the following 35 generators:

η1,1,2, η1,1,3, ξ1,1,3, η1,2,1, η1,5,1, η2,1,1, η2,2,1, η2,2,2, η2,2,3, ξ2,2,3, η2,2,4, η2,2,5,

η2,3,1, η2,4,1, η3,2,1, η3,3,1, η3,3,2, η3,3,3, η3,3,4, ξ3,3,4, η3,3,5, η3,4,1, η3,5,1, η4,2,1,

η4,3,1, η4,4,1, η4,4,2, η4,4,3, ξ4,4,3, η4,4,4, ξ4,4,4, η5,1,1, η5,3,1, η5,5,1, η5,5,3,

where |G| = 195 and the largest relation found is of degree 6.

Characteristic 3: For the splitting field F3 with degree of computation n = 40:

H∗ (S8,F3) ∼= F3 [x3, x4, x7, x8] /〈x2
3, x

2
7〉.

The number of generators is 4 and |G| = 2.

149

The Ext-algebra computation for n = 30 produces the following 20 generators:

η1,2,1, η1,2,2, η1,4,1, η2,1,1, η2,1,2, η2,3,1, η2,3,2, η2,5,1, η2,5,2, η3,2,1,

η3,2,2, η3,4,1, η4,1,1, η4,3,1, η4,4,3, η4,4,8, η4,5,2, η5,2,1, η5,2,2, η5,4,2,

where |G| = 97 and the largest relation found is of degree 30.

Characteristic 5: For the splitting field F5 with degree of computation n = 100:

H∗ (S8,F5) ∼= F5 [x7, x8] /〈x2
7〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 30 produces the following 10 generators:

η1,2,4, η1,4,1, η2,1,4, η2,3,1, η3,2,1, η3,4,1, η3,4,4, η4,1,1, η4,3,1, η4,3,4,

where |G| = 14 and the largest relation found is of degree 5.

Characteristic 7: For the splitting field F7 with degree of computation n = 100:

H∗ (S8,F7) ∼= F7 [x11, x12] /〈x2
11〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 30 produces the following 16 generators:

η1,2,1, η1,3,6, η2,1,1, η2,4,6, η2,6,1, η3,1,6, η3,4,1, η4,2,6,

η4,3,1, η4,5,1, η5,4,1, η5,6,1, η5,6,6, η6,2,1, η6,5,1, η6,5,6,

where |G| = 26 and the largest relation found is of degree 7.

5.4.6 S9

The order of S9 is 27 · 34 · 5 · 7 = 362880.

150

Characteristic 2: For the splitting field F2 with degree of computation n = 12:

H∗ (S9,F2) ∼= F2 [x1, x2, x3, y3, x4, x5, x6, x7] /〈G〉.

The number of generators is 8 and |G| = 24.

Characteristic 3: For the splitting field F3 with degree of computation n = 20:

H∗ (S9,F3) ∼= F3 [x3, x4, x7, x8, x10, x11, y11, x12, x15, x16] /〈G〉.

where G is the set:

x2
3, x3x10, x3y11, x4x10, x4y11, x

2
7, x7x10, x7y11, x8x10, x8y11, x

2
10,

x3x
2
8 + x3x16 + 2 · x3x4x12, x3x

2
4x7 + x3x15 + 2 · x3x4x11,

x4x
2
8 + x4x16 + 2 · x2

4x12, x
3
4x7 + x4x15 + 2 · x3x4x12 + 2 · x2

4x4x11 + x3x
2
4x8.

The number of generators is 10 and |G| = 15.

The Ext-algebra computation for n = 6 produces 72 generators where the largest

generator found is of degree 5 and |G| = 423.

Characteristic 5: For the splitting field F5 with degree of computation n = 100:

H∗ (S9,F5) ∼= F5 [x7, x8] /〈x2
7〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 30 produces the following 10 generators:

η1,2,4, η1,3,1, η2,1,4, η2,4,1, η3,1,1, η3,4,1, η3,4,4, η4,2,1, η4,3,1, η4,3,4,

where |G| = 14 and the largest relation found is of degree 5.

151

Characteristic 7: For the splitting field F7 with degree of computation n = 100:

H∗ (S9,F7) ∼= F7 [x11, x12] /〈x2
11〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 30 produces the following 16 generators:

η1,3,1, η1,5,1, η1,6,6, η2,3,1, η2,3,6, η2,6,1, η3,1,1, η3,2,1,

η3,2,6, η4,5,6, η4,6,1, η5,1,1, η5,4,6, η6,1,6, η6,2,1, η6,4,1,

where |G| = 31 and the largest relation found is of degree 7.

5.4.7 S10

The order of S10 is 28 · 34 · 52 · 7 = 3628800.

Characteristic 3: For the splitting field F3 with degree of computation n = 20:

H∗ (S10,F3) ∼= F3 [x3, x4, x7, x8, x10, x11, y11, x12, x15, x16] /〈G〉.

where G is the set:

x2
3, x3x10, x3y11 + x3x11, x4x10, x

2
7, x7x10, x3x4x11 + x3x15,

x8x10, x
2
4y11 + 2 · x2

4x11 + x4x15 + x3x4x12, x
2
10, x3x

2
8 + 2 · x3x16 + 2 · x3x4x12,

x3x
3
4 + x3x4x8 + 2 · x4y11 + 2 · x4x11, x3x

2
4x4x7 + x3x7x8 + x7y11 + x7x11,

x3x
2
4x8 + x3x16 + 2 · x8x11 + x3x4x12 + 2 · x8y11, x4x

2
8 + 2 · x4x16 + 2 · x2

4x12.

The number of generators is 10 and |G| = 15.

Characteristic 5: For the splitting field F5 with degree of computation n = 30:

H∗ (S10,F5) ∼= F5 [x7, x8, x15, x16] /〈x2
7, x

2
15〉.

The number of generators is 4 and |G| = 2.

The Ext-algebra computation for n = 20 produces 151 generators where the largest

degree of generator found is 16 and |G| = 1793.

152

Characteristic 7: For the splitting field F7 with degree of computation n = 100:

H∗ (S10,F7) ∼= F7 [x11, x12] /〈x2
11〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 30 produces the following 16 generators:

η1,2,1, η1,3,1, η1,6,6, η2,1,1, η2,4,6, η3,1,1, η3,5,1, η3,5,6,

η4,2,6, η4,6,1, η5,3,1, η5,3,6, η5,6,1, η6,1,6, η6,4,1, η6,5,1,

where |G| = 27 and the largest relation found is of degree 7.

5.5 Sporadic Simple Groups

5.5.1 M11

The order of the Mathieu group M11 is 24 · 32 · 5 · 11 = 7920.

Characteristic 2: For the splitting field F2 with degree of computation n = 100:

H∗ (M11,F2) ∼= F2 [x3, x4, x5] /〈x2
3x4 + x2

5〉.

The number of generators is 3 and |G| = 1.

The Ext-algebra computation for n = 30 produces the following 8 generators:

η1,1,4, η1,2,1, η1,3,1, η2,1,1, η2,2,1, η2,2,4, η3,1,1, η3,3,1,

where |G| = 27 and the largest relation found is of degree 30.

Characteristic 3: For the splitting field F3 with degree of computation n = 100:

H∗ (M11,F3) ∼= F3 [x7, x8, x10, x11, y11, x12, x15, x16] /〈G〉.

The number of generators is 8 and |G| = 20.

153

The Ext-algebra computation for n = 30 produces the following 48 generators:

η1,1,2, η1,2,1, η1,2,6, η1,3,5, η1,3,6, η1,3,9, η1,3,10, η1,4,4, η1,4,9, η1,6,2, η1,7,1, η1,7,6,

η2,3,1, η2,3,6, η2,4,1, η2,4,2, η2,4,5, η2,4,6, η2,5,3, η2,5,8, η2,7,2, η3,1,1, η3,1,6, η3,3,2,

η3,4,2, η3,5,1, η3,5,4, η3,6,1, η4,1,1, η4,3,2, η4,6,4, η5,1,1, η5,1,4, η5,2,3, η5,2,8, η6,1,2,

η6,2,1, η6,2,2, η6,2,5, η6,2,6, η6,3,4, η6,3,9, η7,2,2, η7,3,1, η7,3,6, η7,7,2, η7,7,11, η7, 7, 16,

where |G| = 428 and the largest relation found is of degree 30.

Characteristic 5: For the splitting field F5 with degree of computation n = 100:

H∗ (M11,F5) ∼= F5 [x7, x8] /〈x2
7〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 100 produces the following 8 generators:

η1,2,1, η1,2,2, η2,3,1, η2,3,2, η3,4,1, η3,4,2, η4,1,1, η4,1,2,

where G is the set:

η2,3,1η1,2,1, η3,4,1η2,3,1, η4,1,1η3,4,1, η1,2,1η4,1,1, η2,3,1η1,2,2 + Z(5)2·

η2,3,2η1,2,1, η3,4,1η2,3,2 + Z(5)2 · η3,4,2η2,3,1, η4,1,1η3,4,2 + Z(5)2·

η4,1,2η3,4,1, η1,2,1η4,1,2 + Z(5)2 · η1,2,2η4,1,1.

Characteristic 11: For the splitting field F11 with degree of computation n = 100:

H∗ (M11,F11) ∼= F11 [x9, x10] /〈x2
9〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 100 produces the following 14 generators:

η1,1,10, η1,2,1, η1,4,1, η1,5,3, η2,3,4, η2,5,1, η3,1,1,

η3,4,3, η4,1,1, η4,2,3, η5,1,3, η5,3,1, η5,5,1, η5,5,10,

154

where |G| = 34 and the largest relation found is of degree 13:

η2,5,1η1,2,1, η5,3,1η2,5,1, η1,2,1η3,1,1, η1,4,1η4,1,1, η3,1,1η5,3,1, η1,2,1η4,1,1η1,4,1,

η5,5,1η5,5,1η2,5,1, η4,1,1η1,4,1η3,1,1, η5,3,1η5,5,1η5,5,1, η5,1,3η2,5,1, η1,5,3η3,1,1, η5,3,1η1,5,3,

η2,5,1η4,2,3 + Z(11)3 · η1,5,3η4,1,1, η1,2,1η5,1,3,

η1,4,1η5,1,3 + Z(11)2 · η3,4,3η5,3,1, η5,3,1η5,5,1η1,5,3 + Z(11)7 · η2,3,4η1,2,1,

η5,5,1η5,5,1η1,5,3 + Z(11)7 · η1,5,3η4,1,1η1,4,1,

η3,1,1η2,3,4 + Z(11) · η5,1,3η5,5,1η2,5,1, η1,2,1η4,1,1η3,4,3 + Z(11)2 · η4,2,3η1,4,1η3,1,1,

η4,1,1η3,4,3η5,3,1 + Z(11)6 · η5,1,3η5,5,1η5,5,1, η5,1,3η1,5,3,

η1,5,3η5,1,3 + Z(11)9 · η5,5,1η5,5,1η5,5,1η5,5,1η5,5,1η5,5,1,

η5,1,3η5,5,1η5,5,1η5,5,1η5,5,1,

η4,1,1η3,4,3η2,3,4η1,2,1 + Z(11)6 · η5,1,3η5,5,1η1,5,3η4,1,1η1,4,1,

η5,5,1η5,5,1η5,5,1η5,5,1η5,5,1η5,5,1η5,5,1η5,5,1η5,5,1η5,5,1,

η1,5,3η4,1,1η3,4,3η2,3,4 + Z(11) · η5,5,10η2,5,1,

η5,1,3η5,5,1η1,5,3η4,1,1η3,4,3 + Z(11)5 · η1,1,10η3,1,1,

η1,2,1η1,1,10 + Z(11) · η4,2,3η3,4,3η2,3,4η1,2,1, η1,4,1η1,1,10 + Z(11) · η3,4,3η2,3,4η4,2,3η1,4,1,

η4,1,1η3,4,3η2,3,4η4,2,3 + Z(11)9 · η1,1,10η4,1,1, η5,3,1η5,5,10 + Z(11) · η2,3,4η4,2,3η 3,4,3η5,3,1,

η5,5,1η5,5,10 + Z(11)5 · η5,5,10η5,5,1, η1,5,3η1,1,10 + Z(11)5 · η5,5,10η1,5,3,

η5,1,3η5,5,10 + Z(11)5 · η1,1,10η5,1,3.

5.5.2 M12

The order of the Mathieu group M12 is 26 · 33 · 5 · 11 = 95040.

Characteristic 2: For the splitting field F2 with degree of computation n = 12:

H∗ (M12,F2) ∼= F2 [x2, x3, y3, z3, x4, x5, x6, x7] /〈G〉.

155

where G is the set

x2y3, x3y3, x3x5 + x2x3z3, y3z3 + y3y3, z
2
3 + y2

3 + x3
2 + x2

3 + x3z3,

z3x6 + x2
2x5 + x2x3x4 + x2z3x4 + x3x6 + x3

3 + y3x6,

z3x5 + x4
2 + x2x

2
3 + x2x3z3 + y3x5, z3x7 + x2

2x6 + x3
2x4 + x5

2 + x3z3x4 + y3x7,

x2
2z3 + x2x5, x5x5 + x5

2 + x2
2x

2
3 + x2

2x3z3 + y3x7,

x5x7 + x3
2x6 + x4

2x4 + x5
2x2 + x2x3z3x4 + y2

3x6 + y3x4x5,

x2x4x5 + x2
2z3x4, x

2
3z3 + x2x7 + x3x6,

x2
3x4 + x2

2x6 + dotx3
2x4 + x5

2 + x2
2x

2
3 + x2

2x3z3 + x3x7.

The number of generators is 8 and |G| = 14.

The Ext-algebra computation for n = 12 produces the following 27 generators:

η1,1,4, η1,1,6, η1,1,7, η1,2,1, ξ1,2,1, η1,3,1, η1,3,2, η1,3,3, η2,1,1,

ξ2,1,1, η2,2,1, η2,2,3, η2,2,4, η2,2,6, ξ2,2,6, η2,3,1, η3,1,1, η3,1,2,

η3,1,3, η3,2,1, η3,3,1, η3,3,3, η3,3,4, η3,3,6, ξ3,3,6, η3,3,7, η3,3,8,

where |G| = 251 and the largest relation found is of degree 12.

Characteristic 3: For the splitting field F3 with degree of computation n = 30:

H∗ (M12,F3) ∼=

F3 [x3, x4, y4, x5, x9, x10, y10, z10, x11, y11, z11, x12, x15, y15, x16, y16] /〈G〉.

The number of generators is 16 and |G| = 105.

The Ext-algebra computation for n = 30 produces 58 generators where the largest

generator found is of degree 16.

|G| = 449 and the largest relation found is of degree 30.

156

Characteristic 5: For the splitting field F5 with degree of computation n = 100:

H∗ (M12,F5) ∼= F5 [x7, x8] /〈x2
7〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 100 produces the following 10 generators:

η1,2,1, η1,3,1, η1,3,4, η2,1,1, η2,4,4, η3,1,1, η3,1,4, η3,4,1, η4,2,4, η4,3,1,

where |G| = 15 and the largest relation found is of degree 5.

Characteristic 11: For the splitting field F11 with degree of computation n = 100:

H∗ (M12,F11) ∼= F11 [x9, x10] /〈x2
9〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 100 produces the following 14 generators:

η1,1,10, η1,2,1, η1,3,1, η2,1,1, η2,2,10, η2,4,1, η3,1,1,

η3,3,10, η3,5,1, η4,2,1, η4,4,10, η5,3,1, η5,5,1, η5,5,10,

where |G| = 29 and the largest relation found is of degree 11.

5.5.3 J1

The order of the Janko group J1 is 23 · 3 · 5 · 7 · 11 · 19 = 175560.

Characteristic 2: For the splitting field F4 with degree of computation n = 30:

H∗ (J1,F4) ∼= F4 [x3, x4, x5, x6, x7] /〈G〉.

where G is the following set:

x2
5 + Z(4) · x3x7 + Z(4)2 · x4x6,

x4
3 + Z(4) · x2

3x6 + Z(4) · x5x7 + Z(4) · x3x4x5 + Z(4)2 · x2
6 + x3

4.

157

The number of generators is 5 and |G| = 2.

The Ext-algebra computation for n = 30 produces the following 35 generators:

η1,1,3, η1,1,4, η1,1,5, η1,1,6, η1,1,7, η1,3,1, η1,3,2, η1,4,1, η1,4,2, η1,5,1, η2,2,7, η2,3,1,

η2,4,1, η2,5,2, η3,1,1, η3,1,2, η3,2,1, η3,3,3, η3,3,4, η3,3,5, η3,3,6, η3,3,7, η4,1,1, η4,1,2,

η4,2,1, η4,4,3, η4,4,4, η4,4,5, η4,4,6, η4,4,7, η5,1,1, η5,2,2, η5,5,1, η5,5,4, η5,5,7,

where |G| = 277 and the largest relation found is of degree 30.

Characteristic 3: For the splitting field F3 with degree of computation n = 100:

H∗ (J1,F3) ∼= F3 [x3, x4] /〈x2
3〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 100 produces the following 4 generators:

η1,2,1, η1,2,2, η2,1,1, η2,1,2,

where G is the set:

η2,1,1η1,2,1, η1,2,1η2,1,1, η2,1,1η1,2,2 + 2 · η2,1,2η1,2,1, η1,2,1η2,1,2 + 2 · η1,2,2η2,1,1.

Characteristic 5: For the splitting field F5 with degree of computation n = 100:

H∗ (J1,F5) ∼= F5 [x3, x4] /〈x2
3〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 100 produces the following 4 generators:

η1,2,1, η1,2,2, η2,1,1, η2,1,2,

with G the set:

η2,1,1η1,2,1, η1,2,1η2,1,1, η2,1,1η1,2,2 + Z(5)2 · η2,1,2η1,2,1, η1,2,1η2,1,2 + Z(5)2 · η1,2,2η2,1,1.

158

Characteristic 7: For the splitting field F7 with degree of computation n = 100:

H∗ (J1,F7) ∼= F7 [x11, x12] /〈x2
11〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 100 produces the following 16 generators:

η1,2,1, η1,4,6, η1,5,1, η2,1,1, η2,3,1, η2,3,6, η3,2,1, η3,2,6,

η3,4,1, η4,1,6, η4,3,1, η4,6,1, η5,1,1, η5,6,6, η6,4,1, η6,5,6,

where |G| = 31 and the largest relation found is of degree 7.

Characteristic 11: For the splitting field F11 with degree of computation n = 100:

H∗ (J1,F11) ∼= F11 [x19, x20] /〈x2
19〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 40 produces the following 28 generators:

η1,2,1, η1,7,1, η1,7,10, η2,1,1, η2,6,1, η2,9,10, η3,6,10, η3,9,1, η3,10,1, η4,5,10,

η4,10,1, η5,4,10, η5,8,1, η6,2,1, η6,3,10, η6,8,1, η7,1,1, η7,1,10, η7,9,1,

η8,5,1, η8,6,1, η8,10,10, η9,2,10, η9,3,1, η9,7,1, η10,3,1, η10,4,1, η10,8,10,

where |G| = 64 and the largest relation found is of degree 11.

Characteristic 19: For the splitting field F19 with degree of computation n = 100:

H∗ (J1,F19) ∼= F19 [x11, x12] /〈x2
11〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 100 produces the following 17 generators:

η1,1,3, η1,1,12, η1,2,1, η1,6,1, η2,1,1, η2,2,12, η2,3,1, η3,2,1, η3,3,12,

η3,5,1, η4,5,1, η4,6,6, η5,3,1, η5,4,1, η5,5,12, η6,1,1, η6,4,6,

where |G| = 45 and the largest relation found is of degree 15.

159

5.5.4 M22

The order of the Mathieu group M22 is 27 · 32 · 5 · 7 · 11 = 443520.

Characteristic 2: For the splitting field F4 with degree of computation n = 15:

H∗ (M22,F4) ∼= F4 [x2, x3, x5, y5, x6, y6, x7, x8, y8, x9, y9, x10, x11, x12, y12] /〈G〉.

The number of generators is 15 and |G| = 32.

Characteristic 3: For the splitting field F3 with degree of computation n = 50:

H∗ (M22,F3) ∼= F3 [x2, x3, x7, y7, x8, y8, x11, x12] /〈G〉.

where G is the set:

x2
2, x2x3, x2x7, x2y7, x2x11, x

2
3, x3x7 + Z(3) · x2x8 + x2y8, x3y7 + Z(3) · x2y8,

x3x11 + x2x12, x
2
7, x7y7 + x2x12, x7x11 + Z(3) · x2x8y8 + x2y

2
8, y

2
7,

y7y8 + x3x12 + x7y8 + Z(3) · y7x8, y7x11 + x2x8y8 + Z(3) · x2y
2
8,

x8x11 + x7x12 + y7x12, y8x11 + Z(3) · x3x8y8 + x3y
2
8 + y7x12, x

2
11,

x11x12 + x3y8x12 + x7x8y8, x
2
12 + Z(3) · x2

8y8 + x8y
2
8.

The number of generators is 8 and |G| = 20.

The Ext-algebra computation for n = 30 produces the following 42 generators:

η1,1,3, η1,1,8, η1,2,1, η1,4,1, η2,1,1, η2,2,3, η2,2,8, η2,3,1, η2,3,6, η2,4,3, η2,4,4,

η2,4,8, η2,5,1, η2,5,6, η3,2,1, η3,2,6, η3,3,3, η3,3,8, η3,4,1, η3,4,6, η3,5,3, η3,5,4,

η3,5,8, η4,1,1, η4,2,3, η4,2,4, η4,2,8, η4,3,1, η4,3,6, η4,4,3, η4,4,8, η4,5,1,

η4,5,6, η5,2,1, η5,2,6, η5,3,3, η5,3,4, η5,3,8, η5,4,1, η5,4,6, η5,5,3, η5,5,8,

where |G| = 291 and the largest relation found is of degree 16.

160

Characteristic 5: For the splitting field F5 with degree of computation n = 100:

H∗ (M22,F5) ∼= F5 [x7, x8] /〈x2
7〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 40 produces the following 10 generators:

η1,2,1, η1,2,4, η1,3,1, η2,1,1, η2,1,4, η2,4,1, η3,1,1, η3,4,4, η4,2,1, η4,3,4,

where |G| = 16 and the largest relation found is of degree 5.

Characteristic 7: For the splitting field F7 with degree of computation n = 100:

H∗ (M22,F7) ∼= F7 [x5, x6] /〈x2
5〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 40 produces the following 8 generators:

η1,1,6, η1,2,1, η1,3,1, η2,1,1, η2,2,1, η2,2,6, η3,1,1, η3,3,6,

where |G| = 14 and the largest relation found is of degree 7.

Characteristic 11: For the splitting field F11 with degree of computation n = 100:

H∗ (M22,F11) ∼= F11 [x9, x10] /〈x2
9〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 40 produces the following 13 generators:

η1,1,5, η1,1,10, η1,2,1, η1,4,1, η2,3,1, η2,3,2, η3,1,1, η3,5,4, η4,1,1, η4,4,10, η4,5,1, η5,2,4, η5,4,1,

where |G| = 30 and the largest relation found is of degree 15.

5.5.5 J2

The order of the Janko group J2 is 27 · 33 · 52 · 7 = 604800.

161

Characteristic 2: For the splitting field F4 with degree of computation n = 10:

H∗ (J2,F4) ∼= F4 [x2, x3, y3, x5, x6, x7, x8, y8, z8, x9, y9] /〈G〉.

where G is the set:

x3x5 + Z(22)2 · x2x
2
3, x3x7 + Z(22) · x2

2x
2
3 + Z(22) · x2

2x3y3,

y2
3 + Z(22) · x3

2 + Z(22) · x3y3, y3x5 + Z(22)2 · x2x3y3,

y3x7 + Z(22)2 · x5
2 + x2

2x3y3, x
2
2x3 + Z(22) · x2x5,

x2
5 + Z(22) · x2

2x
2
3, x

3
2y3 + Z(22)2 · x2x7 + Z(22) · x2

2x5.

The number of generators is 11 and |G| = 8.

Characteristic 3: For the splitting field F9 with degree of computation n = 30:

H∗ (J2,F9) ∼= F9 [x3, x4, y4, x5, x9] /〈G〉.

where |G| = 22 and the largest relation found is of degree 25.

The Ext-algebra computation for n = 20 produces generators where the largest

generator found is of degree 12 and |G| = 473 and the largest relation found is of

degree 20.

Characteristic 5: For the splitting field F5 with degree of computation n = 40:

H∗ (J2,F5) ∼= F5 [x3, x4, x11, x12] /〈x2
3, x

2
11〉.

The number of generators is 4 and |G| = 2.

The Ext-algebra computation for n = 24 produces the following 33 generators:

η1,1,4, η1,1,12, η1,2,1, η1,6,8, η2,1,1, η2,2,1, η2,2,4, η2,2,8, η2,2,12, η2,4,1, η2,5,1,

η2,6,1, η3,3,12, η3,4,1, η3,6,1, η4,2,1, η4,3,1, η4,4,1, η4,4,4, η4,4,12, η4,5,1, η4,5,8,

η5,2,1, η5,4,1, η5,4,8, η5,5,1, η5,5,4, η5,5,12, η6,1,8, η6,2,1, η6,3,1, η6,6,4, η6,6,12,

where |G| = 275 and the largest relation found is of degree 20.

162

Characteristic 7: For the splitting field F7 with degree of computation n = 100:

H∗ (J2,F7) ∼= F7 [x11, x12] /〈x2
11〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 40 produces the following 16 generators:

η1,4,6, η1,5,1, η2,5,1, η2,6,1, η2,6,6, η3,4,1, η3,5,6, η3,6,1,

η4,1,6, η4,3,1, η5,1,1, η5,2,1, η5,3,6, η6,2,1, η6,2,6, η6,3,1,

where |G| = 27 and the largest relation found is of degree 7.

5.5.6 M23

The order of the Mathieu group M23 is 27 · 32 · 5 · 7 · 11 · 23 = 10200960.

Characteristic 2: For the splitting field F2 with degree of computation n = 14:

H∗ (M23,F2) ∼= F2 [x6, x7, y7, x8, y8, x9, x10, x11, y11, z11, x12, y12, x13] /〈G〉.

where G is the set:

x6y7 + x6x7, x7y7 + x2
7, y

2
7 + x2

7.

The number of generators is 13 and |G| = 3.

Characteristic 3: For the splitting field F3 with degree of computation n = 40:

H∗ (M23,F3) ∼= F3 [x7, x8, x10, x11, y11, x12, x15, x16] /〈G〉.

where G is the set:

x2
7, x7x10, x7y11 + 2 · x7x11, x8x10 + 2 · x7x11, x8y11 + x7x12 + 2 · x8x11,

x2
10, x10x11, x10y11, x10x12 + 2 · x7x15, x10x15, x

2
11, x11y11 + 2 · x7x15,

x11x12 + 2 · x7x16 + 2 · x8x15, x11x15 + 2 · x10x16, y
2
11, y11x12 + 2 · x8x15,

y11x15, x
2
12 + 2 · x8x16, x12x15 + 2 · y11x16, x

2
15.

163

The number of generators is 8 and |G| = 20.

The Ext-algebra computation for n = 30 produces the following 36 generators:

η1,1,3, η1,1,4, η1,5,2, η1,6,1, η1,6,2, η1,7,1, η1,7,2, η2,1,3, η2,1,4, η2,2,3, η2,2,4, η2,3,1,

η2,3,2, η2,4,4, η2,5,1, η3,1,1, η3,1,2, η3,5,1, η4,1,1, η4,2,2, η4,3,1, η4,4,2, η4,5,1, η4,5,6,

η5,1,4, η5,4,5, η5,4,10, η5,5,2, η5,6,1, η5,7,3, η6,2,1, η6,2,2, η6,4,1, η7,2,1, η7,2,2, η7,4,3,

where |G| = 236 and the largest relation found is of degree 21.

Characteristic 5: For the splitting field F5 with degree of computation n = 100:

H∗ (M23,F5) ∼= F5 [x7, x8] /〈x2
7〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 40 produces the following 8 generators:

η1,2,1, η1,2,2, η2,3,1, η2,3,2, η3,4,1, η3,4,2, η4,1,1, η4,1,2,

where |G| = 8 and the largest relation found is of degree 3.

Characteristic 7: For the splitting field F7 with degree of computation n = 100:

H∗ (M23,F7) ∼= F7 [x5, x6] /〈x2
5〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 40 produces the following 8 generators:

η1,1,6, η1,2,1, η2,1,1, η2,2,6, η2,3,1, η3,2,1, η3,3,1, η3,3,6,

where |G| = 13 and the largest relation found is of degree 7.

164

Characteristic 11: For the splitting field F11 with degree of computation n = 100:

H∗ (M23,F11) ∼= F11 [x9, x10] /〈x2
9〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 40 produces the following 13 generators:

η1,1,5, η1,1,10, η1,2,1, η1,5,1, η2,3,1, η2,3,2, η3,1,1, η3,4,4, η4,2,4, η4,5,1, η5,1,1, η5,4,1, η5,5,10,

where |G| = 30 and the largest relation found is of degree 15.

Characteristic 23: For the splitting field F23 with degree of computation n = 100:

H∗ (M23,F23) ∼= F23 [x21, x22] /〈x2
21〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 100 produces the following 35 generators:

η1,3,4, η1,8,1, η2,4,1, η2,7,6, η3,9,3, η3,11,1, η4,2,1, η4,5,1, η4,10,6, η5,4,1, η5,5,22, η5,8,1,

η5,8,8, η6,3,1, η6,5,1, η6,5,8, η6,6,2, η6,8,7, η6,8,14, η6,11,3, η7,1,3, η7,10,1, η8,6,1, η8,6,8,

η8,8,2, η8,10,1, η9,2,6, η9,11,1, η10,1,1, η10,7,1, η10,8,3, η10,11,10, η11,4,6, η11,6,1, η11,9,1,

where |G| = 105 and the largest relation found is of degree 31.

5.5.7 HS

The order of the Higman-Sims group is 29 · 32 · 53 · 7 · 11 = 44352000.

Characteristic 3: For the splitting field F3 with degree of computation n = 50:

H∗ (HS,F3) ∼= F3 [x7, x8, x10, x11, x12, x15, x16] /〈G〉.

165

where G is the set:

x7x7, x7x10, x7y11, x8x10 + 2 · x7x11, x8y11 + 2 · x7x12, x10x10,

x10x11, x10y11, x10x12 + 2 · x7x15, x10x15, x11x11,

x11y11 + x7x15, x11x12 + 2 · x8x15, x11x15, y11y11, y11x12 + 2 · x7x16,

y11x15 + 2 · x10x16, x12x12 + 2 · x8x16, x12x15 + 2 · x11x16, x15x15.

The number of generators is 8 and |G| = 20.

The Ext-algebra computation for n = 30 produces the following 50 generators:

η1,1,8, η1,2,3, η1,2,8, η1,3,1, η1,3,6, η1,5,1, η2,1,3, η2,1,8, η2,3,1, η2,3,6, η2,5,1, η2,5,6, η2,6,3,

η2,6,4, η2,6,8, η3,1,1, η3,1,6, η3,2,1, η3,2,6, η3,3,3, ξ3,3,3, η3,3,4, η3,3,8, ξ3,3,8, η3,4,1,

η3,5,3, η3,5,8, η3,6,1, η3,6,6, η3,7,1, η4,3,1, η4,7,3, η4,7,8, η5,1,1, η5,2,1, η5,2,6, η5,3,3,

η5,3,8, η5,5,8, η5, 5, 11, η5,7,1, η6,2,3, η6,2,4, η6,2,8, η6,3,1, η6,3,6, η7,3,1, η7,4,3, η7,4,8, η7,5,1,

where |G| = 426 and the largest relation found is of degree 30.

Characteristic 5: For the splitting field F5 with degree of computation n = 30:

H∗ (HS,F5) ∼=

F5 [x4, x5, x7, y7, x8, y8, x13, x14, x15, x16, x18, x19, x23, x24, x27, x28] /〈G〉.

The number of generators is 16 and |G| = 57.

The Ext-algebra computation for n = 8 produces 189 generators where the largest

generator found is of degree 8 and |G| = 1945.

Characteristic 7: For the splitting field F7 with degree of computation n = 100:

H∗ (HS,F7) ∼= F7 [x11, x12,] /〈x2
11〉.

The number of generators is 2 and |G| = 1.

166

The Ext-algebra computation for n = 30 produces the following 16 generators:

η1,2,1, η1,5,1, η1,6,6, η2,1,1, η2,4,6, η3,5,1, η3,5,6, η3,6,1,

η4,2,6, η4,6,1, η5,1,1, η5,3,1, η5,3,6, η6,1,6, η6,3,1, η6,4,1,

where |G| = 30 and the largest relation found is of degree 7.

Characteristic 11: For the splitting field F11 with degree of computation n = 100:

H∗ (HS,F11) ∼= F11 [x9, x10] /〈x2
9〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 30 produces the following 14 generators:

η1,1,10, η1,2,1, η1,3,1, η2,1,1, η2,2,1, η2,2,10, η3,1,1,

η3,3,10, η3,5,1, η4,4,10, η4,5,1, η5,3,1, η5,4,1, η5,5,10,

where |G| = 34 and the largest relation found is of degree 11.

5.5.8 J3

The order of the Janko group J3 is 27 · 35 · 5 · 17 · 19 = 50232960.

Characteristic 3: For the splitting field F9 with degree of computation n = 14:

H∗ (J3,F9) ∼=

F9 [x2, x3, y3, x4, x7, y7, z7, w7, x8, y8, z8, x11, y11, x12, y12, z12, w12, x13, y13] /〈G〉.

The number of generators is 19 and |G| = 50.

167

Characteristic 5: For the splitting field F3 with degree of computation n = 100:

H∗ (J3,F5) ∼= F5 [x3, x4] /〈x2
3〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 100 produces the following 5 generators:

η1,1,1, η1,1,4, η1,2,1, η2,1,1, η2,2,4,

where |G| = 8 and the largest relation found is of degree 5.

Characteristic 17: For the splitting field F17 with degree of computation n = 100:

H∗ (J3,F17) ∼= F17 [x15, x16] /〈x2
15〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 100 produces the following 23 generators:

η1,3,8, η1,4,1, η2,5,8, η2,7,1, η2,8,1, η3,1,8, η3,8,1, η4,1,1, η4,5,1, η4,8,8, η5,2,8, η5,4,1,

η5,6,1, η6,5,1, η6,6,7, η6,6,16, η6,7,1, η7,2,1, η7,6,1, η7,7,16, η8,2,1, η8,3,1, η8,4,8,

where |G| = 58 and the largest relation found is of degree 23.

Characteristic 19: For the splitting field F19 with degree of computation n = 100:

H∗ (J3,F19) ∼= F19 [x17, x18] /〈x2
17〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 100 produces the following 26 generators:

η1,1,18, η1,2,1, η1,3,1, η2,1,1, η2,2,18, η2,8,1, η3,1,1, η3,3,18, η3,9,1, η4,4,18, η4,7,1, η4,8,1, η5,5,18,

η5,9,1, η6,6,1, η6,6,18, η6,7,1, η7,4,1, η7,6,1, η7,7,18, η8,2,1, η8,4,1, η8,8,18, η9,3,1, η9,5,1, η9,9,18,

where |G| = 78 and the largest relation found is of degree 19.

168

5.5.9 McL

The order of the McLaughlin group is 27 · 36 · 53 · 7 · 11 = 898128000.

Characteristic 2: For the splitting field F2 with degree of computation n = 20:

H∗ (McL,F2) ∼= F2 [x7, x8, x11, x12, x14, y14, x15, y15, x17, x18, y18]] /〈x2
7, x7x11〉.

The number of generators is 11 and |G| = 2.

The Ext-algebra computation for n = 8 produces 148 generators where the largest

generator is of degree 8 and |G| = 1454.

Characteristic 5: For the splitting field F25 with degree of computation n = 40:

H∗ (McL,F25) ∼= F25 [x4, x5, x7, x8, x13, x14, x15, x16, x23, x24, x39] /〈G〉.

The number of generators is 11 and |G| = 42.

The Ext-algebra computation for n = 14 produces 295 generators where the largest

generator is of degree 14 and |G| = 4988.

Characteristic 7: For the splitting field F7 with degree of computation n = 100:

H∗ (McL,F7) ∼= F7 [x5, x6] /〈x2
5〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 100 produces the following 8 generators:

η1,1,3, η1,1,6, η1,2,1, η1,3,1, η2,1,1, η2,3,3, η3,1,1, η3,2,3,

where |G| = 17 and the largest relation found is of degree 9.

169

Characteristic 11: For the splitting field F11 with degree of computation n = 100:

H∗ (McL,F11) ∼= F11 [x9, x10] /〈x2
9〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 100 produces the following 14 generators:

η1,1,10, η1,4,1, η1,5,1, η2,2,10, η2,4,1, η3,3,1, η3,3,10,

η3,5,1, η4,1,1, η4,2,1, η4,4,10, η5,1,1, η5,3,1, η5,5,10,

where |G| = 30 and the largest relation found is of degree 11.

5.6 Classical Groups

5.6.1 L2 (7)

The order of L2 (7) is 23 · 3 · 7 = 168.

Characteristic 2: For the splitting field F2 with degree of computation n = 50:

H∗ (L2 (7) ,F2) ∼= F2 [x2, x3, y3] /〈x3y3〉.

The number of generators is 3 and |G| = 1.

The Ext-algebra computation for n = 40 produces the following 6 generators:

η1,2,1, η1,3,1, η2,1,1, η2,3,1, η3,1,1, η3,2,1,

where |G| = 44 and the largest relation found is of degree 40.

Characteristic 3: For the splitting field F3 with degree of computation n = 100:

H∗ (L2 (7) ,F3) ∼= F3 [x3, x4] /〈x2
3〉.

The number of generators is 2 and |G| = 1.

170

The Ext-algebra computation for n = 100 produces the following 4 generators:

η1,2,1, η1,2,2, η2,1,1, η2,1,2,

and the set G is:

η2,1,1η1,2,1, η1,2,1η2,1,1, η2,1,1η1,2,2 + 2 · η2,1,2η1,2,1, η1,2,1η2,1,2 + 2 · η1,2,2η2,1,1.

Characteristic 7: For the splitting field F7 with degree of computation n = 100:

H∗ (L2 (7) ,F7) ∼= F7 [x5, x6] /〈x2
5〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 100 produces the following 8 generators:

η1,1,1, η1,1,6, η1,2,1, η2,1,1, η2,2,6, η2,3,1, η3,2,1, η3,3,6,

where |G| = 16 and the largest relation found is of degree 7.

5.6.2 L3 (3)

The order of L3 (3) is 24 · 33 · 13 = 5616.

Characteristic 2: For the splitting field F2 with degree of computation n = 40:

H∗ (L3 (3) ,F2) ∼= F2 [x3, x4, y5] /〈x2
3x4 + x2

5〉.

The number of generators is 3 and |G| = 1.

The Ext-algebra computation for 40 produces the following 8 generators:

η1,1,4, η1,2,1, η1,3,1, η2,1,1, η2,2,1, η2,2,4, η3,1,1, η3,3,1,

where |G| = 32 and the largest relation found is of degree 40.

171

Characteristic 3: For the splitting field F3 with degree of computation n = 30:

H∗ (L3 (3) ,F3) ∼=

F3 [x3, x4, y4, x5, x9, x10, y10, z10, x11, y11, z11, x12, x15, y15, x16, y16] /〈G〉.

The number of generators is 16 and |G| = 101.

The Ext-algebra computation for n = 30 produces 60 generators where the largest

generator found is of degree 12. |G| = 787 and the largest relation found is of degree

30.

Characteristic 13: For the splitting field F13 with degree of computation n = 100:

H∗ (L3 (3) ,F13) ∼= F13 [x5, x6] /〈x2
5〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 100 produces the following 8 generators:

η1,1,6, η1,2,1, η2,1,1, η2,2,6, η2,3,1, η3,2,1, η3,3,1, η3,3,6,

where |G| = 13 and the largest relation found is of degree 7.

5.6.3 L2 (8)

The order of L2 (8) is 23 · 32 · 7 = 504.

Characteristic 2: For the splitting field F8 with degree of computation n = 20:

H∗ (L2 (8) ,F8) ∼= F8 [x3, x4, y4, z4, x5, y5, z5, x6, y6, z6, x7, y7, z7] /〈G〉.

The number of generators is 13 and |G| = 54.

The Ext-algebra computation for n = 20 produces 55 generators where the largest

generator is of degree 7. |G| = 498 where the largest relation found is of degree 14.

172

Characteristic 3: For the splitting field F3 with degree of computation n = 100:

H∗ (L2 (8) ,F3) ∼= F3 [x3, x4] /〈x2
3〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 100 produces the following 5 generators:

η1,1,4, η1,2,1, η2,1,1, η2,2,1, η2,2,4,

where |G| = 7 and the largest relation found is of degree 5.

Characteristic 7: For the splitting field F7 with degree of computation n = 100:

H∗ (L2 (8) ,F7) ∼= F7 [x3, x4] /〈x2
3〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 100 produces the following 4 generators:

η1,2,1, η1,2,2, η2,1,1, η2,1,2,

where G is the set:

η2,1,1η1,2,1, η1,2,1η2,1,1, η2,1,1η1,2,2 + Z(7)3 · η2,1,2η1,2,1, η1,2,1η2,1,2 + Z(7)3 · η1,2,2η2,1,1.

5.6.4 U3 (3)

The order of U3 (3) is 25 · 33 · 7 = 6048.

Characteristic 2: For the splitting field F2 with degree of computation n = 30:

H∗ (U3 (3) ,F2) ∼= F2 [x3, x4, x5, x6] /〈x2
3, x

2
5〉.

The number of generators is 4 and |G| = 2.

The Ext-algebra computation for n = 30 produces the following 16 generators:

η1,1,3, η1,1,4, η1,1,5, η1,1,6, η1,2,1, η1,2,2, η2,1,1, η2,1,2,

η2,3,1, η2,3,2, ξ2,3,2, η2,3,3, η3,2,1, η3,2,2, ξ3,2,2, η3,2,3,

where |G| = 91 and the largest relation found is of degree 30.

173

Characteristic 3: For the splitting field F9 with degree of computation n = 40:

H∗ (U3 (3) ,F9) ∼= F9 [x3, x4, y4, x5, x9, x10, x11, x12] /〈G〉.

where G is given by the set:

x2
3, x3y4, x3x9, x4y4 + Z(3) · x3x5, x4x9 + Z(32)2 · x3x10, y

2
4,

y4x5, y4x9, y4x10 + Z(32) · x3x11, y4x11, x
2
5, x5x9 + Z(32)3 · x3x11,

x5x10 + Z(32) · x4x11, x5x11, x3x4x12 + Z(3) · x9x10, x3x5x12 + Z(32) · x9x11,

x2
4x12 + Z(32)5 · x9x11 + Z(32)2 · x2

10, x4x5x12 + Z(32)7 · x10x11, x
2
9, x

2
11.

The number of generators is 8 and |G| = 20.

The Ext-algebra computation for n = 40 produces 66 generators where the largest

generator found is of degree 12. |G| = 560 and the largest relation found is of degree

23.

Characteristic 7: For the splitting field F7 with degree of computation n = 100:

H∗ (U3 (3) ,F7) ∼= F7 [x5, x6] /〈x2
5〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 100 produces the following 8 generators:

η1,2,1, η1,3,3, η2,1,1, η2,2,3, η2,2,6, η2,3,1, η3,1,3, η3,2,1,

where |G| = 17 and the largest relation found is of degree 9.

5.6.5 U3 (4)

The order of U3 (4) is 26 · 3 · 52 · 13 = 62400.

174

Characteristic 2: For the splitting field F16 with degree of computation n = 14:

H∗ (U3(4),F16) ∼= F16[x5, y5, z5, x6, y6, z6, w6, x7, y7, x8, y8, z8, w8,

x9, y9, z9, x11, y11, x12, y12, z12, w12, x13, y13]/〈G〉.

The number of generators is 24 and |G| = 81.

The Ext-algebra computation for n = 5 produces 92 generators where the largest

generator found is of degree 4 and |G| = 521.

Characteristic 3: For the splitting field F3 with degree of computation n = 100:

H∗ (U3 (4) ,F3) ∼= F3 [x3, x4] /〈x2
3〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 100 produces the following 4 generators:

η1,2,1, η1,2,2, η2,1,1, η2,1,2,

where G is the set:

η2,1,1η1,2,1, η1,2,1η2,1,1, η2,1,1η1,2,2 + 2 · η2,1,2η1,2,1, η1,2,1η2,1,2 + 2 · η1,2,2η2,1,1.

Characteristic 5: For the splitting field F5 with degree of computation n = 30:

H∗ (U3 (4) ,F5) ∼= F5 [x3, x4, x5, x6] /〈x2
3, x

2
5〉.

The number of generators is 4 and |G| = 2.

The Ext-algebra computation for n = 20 produces the following 19 generators:

η1,1,1, η1,1,3, η1,1,4, η1,1,6, η1,3,1, η1,3,2, η2,2,3, η2,2,4, η2,2,5, η2,2,6,

η2,3,1, η2,3,2, η3,1,1, η3,1,2, η3,2,1, η3,2,2, η3,3,4, η3,3,5, η3,3,6,

where |G| = 102 and the largest relation found is of degree 20.

175

Characteristic 13: For the splitting field F13 with degree of computation n = 100:

H∗ (U3 (4) ,F13) ∼= F13 [x5, x6] /〈x2
5〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 100 produces the following 8 generators:

η1,1,3, η1,1,6, η1,2,1, η1,3,1, η2,1,1, η2,3,3, η3,1,1, η3,2,3,

where |G| = 17 and the largest relation found is of degree 9.

5.6.6 U3 (5)

The order of U3 (5) is 24 · 32 · 53 · 7 = 126000.

Characteristic 2: For the splitting field F2 with degree of computation n = 30:

H∗ (U3 (5) ,F2) ∼= F2 [x3, x4, x5] /〈x2
3x4 + x2

5〉.

The number of generators is 3 and |G| = 1.

The Ext-algebra computation for n = 30 produces the following 11 generators:

η1,1,3, η1,1,4, η1,1,5, η1,2,1, η1,2,2, η1,3,1, η2,1,1, η2,1,2, η2,2,4, η3,1,1, η3,3,3,

where |G| = 61 and the largest relation found is of degree 30.

Characteristic 3: For the splitting field F3 with degree of computation n = 30:

H∗ (U3 (5) ,F3) ∼= F3 [x2, x3, x7, y7, x8, y8, x11, x12] /〈G〉.

where G is the set:

x2
2, x2x3, x2x7, x2y7, x2x11, x

2
3, x3x7 + x2x8 + x2y8, x3y7 + 2 · x2x8,

x3x11 + 2 · x2x12, x
2
7, x7y7 + x2x12, y

2
7, y7y8 + x3x12 + x7x8 + y7x8, y7x11 + x7x11,

y8x11 + y7x12 + x7x12, x8y
2
8 + x2

12 + x2
8y8, x2x8y8 + x7x11 + x2x

2
8, x

2
11,

x3x8y8 + y7x12 + x8x11 + x3x8x8, x7x8y8 + 2 · x11x12 + 2 · x3x8x12

176

The number of generators is 8 and |G| = 20.

The Ext-algebra computation for n = 30 produces the following 16 generators:

η1,2,1, η1,2,2, η2,1,1, η2,1,2, η2,3,1, η2,3,2, η2,4,1, η2,4,2,

η2,5,1, η2,5,2, η3,2,1, η3,2,2, η4,2,1, η4,2,2, η5,2,1, η5,2,2,

where |G| = 64 and the largest relation found is of degree 30.

Characteristic 5: For the splitting field F25 with degree of computation n = 20:

H∗ (U3 (5) ,F25) ∼= F25 [x4, y4, x5, y5, x7, y7, z7, x8, y8, z8, x13, y13, x14, y14, x15, x16] /〈G〉.

The number of generators is 16 and |G| = 65.

The Ext-algebra computation for n = 6 produces 51 generators where the largest

generator found is of degree 5 and |G| = 409.

Characteristic 7: For the splitting field F7 with degree of computation n = 100:

H∗ (U3 (5) ,F7) ∼= F7 [x5, x6] /〈x2
5〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 100 produces the following 8 generators:

η1,2,1, η1,3,3, η2,1,1, η2,2,3, η2,2,6, η2,3,1, η3,1,3, η3,2,1,

where |G| = 17 and the largest relation found is of degree 9.

5.6.7 U4 (2)

The order of U4 (2) is 26 · 34 · 5 = 25920.

177

Characteristic 2: For the splitting field F4 with degree of computation n = 14:

H∗ (U4 (2) ,F4) ∼= F4 [x2, x3, y3, x4, x5, x10] /〈G〉.

where G is the set:

y2
3 + x3y3, y3x5, y3x10 + Z(22) · x5

2y3 + Z(22) · x2y3x
2
4

The number of generators is 6 and |G| = 3.

The Ext-algebra computation for n = 10 produces 80 generators where the largest

generator found is of degree 7 and |G| = 804.

Characteristic 3: For the splitting field F3 with degree of computation n = 20:

H∗ (U4 (2) ,F4) ∼= F4 [x3, x4, x5, x6, x7, x8] /〈x2
3, x

2
5, x

2
7〉.

The number of generators is 6 and |G| = 3.

The Ext-algebra computation for n = 10 produces 81 generators where the largest

generator found is of degree 9 and |G| = 984.

Characteristic 5: For the splitting field F5 with degree of computation n = 100:

H∗ (U4 (2) ,F5) ∼= F5 [x7, x8] /〈x2
7〉.

The number of generators is 2 and |G| = 1.

The Ext-algebra computation for n = 100 produces the following 10 generators:

η1,2,1, η1,2,4, η1,4,1, η2,1,1, η2,1,4, η2,3,1, η3,2,1, η3,4,4, η4,1,1, η4,3,4,

where |G| = 16 and the largest relation found is of degree 5.

178

5.7 Timing Comparisons of Projective Resolutions

In this section we provide a comparison of timings of minimal projective resolutions

for basic algebras arising from a variety of groups. We compare the method using

the author’s implementation using linear algebra (Lin), the author’s Anick-Green

resolution in GAP (Ani), and Green and Feustel’s program GRB [FG91]. Note that

the program GRB only works over fields of size p and no extensions which are needed

for groups such as A4 in characteristic 2. We use the notation A in our table of timings

to denote when the program GRB aborted due to memory issues. It is clear from

the results that we obtained that due to the poor performance in terms of timings

from the Anick-Green methods, perhaps due to the need to compute Gröbner bases

and then reduce rather large matrices repeatedly without linear algebra, that the

linear algebra method is vastly superior in terms of speed. We also found that for

the small examples below that we computed here that there were no memory savings.

After these initial findings, we did not make any significant attempts to speed up our

Anick-Green implementation in GAP, as the stand alone C-program GRB could not

even compete with the author’s linear algebra implementation in GAP.

We must note, however, that there are advantages to the method of Anick and

Green. The first is that their method only relies on having an Artinian ring. There-

fore if we wish to compute the Ext-algebra for an Artinian ring which is infinite

dimensional with an admissible order such that there is a finite Gröbner basis G the

method of linear algebra clearly does not work. However if we have the conditions

above, we can still use the Anick-Green method.

In the comparisons, we include a variety of alternating groups, symmetric groups,

sporadic groups, linear groups, and also p-groups of order 16 and 27. We label the

nonabelian p-groups by their position in the list of small groups in the library of small

groups in GAP. For all of the computations, we give the group name G, the splitting

field Fq for the group algebra kG, the program used, and timings for projective

179

resolutions for all of the simple kG-modules Si.

G Fq Prg 1 2 3 4 5 6 7

A4 F4 Lin 30 20 20
Ani 100 100 90
GRB - - -

F3 Lin 0
Ani 10
GRB 0

A5 F4 Lin 10 10 10
Ani 80 20 30
GRB - - -

F3 Lin 0 0
Ani 10 10
GRB 0 0

A6 F2 Lin 10 0 10
Ani 90 20 40
GRB 10 10 10

F9 Lin 50 30 20 50
Ani 1080 5310 1410 14160
GRB - - - -

A7 F2 Lin 10 20 0
Ani 130 60 20
GRB 10 10 10

F9 Lin 70 50 40 50
Ani 15980 9320 10970 11370
GRB - - - -

A8 F2 Lin 880 2160 960 840 1340 920 1010
GRB 369040 A 158000 88540 A 212150 185910

F3 Lin 30 20 80 30 30
Ani 2240 2040 10460 2040 2280
GRB 10 10 10 10 10

Table 5.3. Minimal Resolution Comparisons: Alternating Groups

180

G Fq Prg 1 2 3 4 5

S4 F2 Lin 10 20
Ani 90 190
GRB 10 10

F3 Lin 10 0
Ani 10 10
GRB 10 10

S5 F2 Lin 10 10
Ani 320 20
GRB 10 10

F3 Lin 0 0
Ani 10 0
GRB 0 0

S6 F2 Lin 260 70 70
Ani 3883020 62150 54500
GRB 104760 1000 330

F3 Lin 20 20 40 30 30
Ani 1510 1650 4630 2500 3120
GRB 10 10 10 10 10

S7 F2 Lin 270 260 30
Ani 70780 177500 3620
GRB 430 420 60

F3 Lin 40 30 30 40 80
Ani 3480 6020 4410 3930 16270
GRB 10 10 10 10 10

S8 F2 Lin 1160 3170 3880 4000 1470
GRB A A A A A

F3 Lin 20 70 30 30 20
Ani 3040 11360 2110 2430 2410
GRB 10 10 10 10 10

Table 5.4. Minimal Resolution Comparisons: Symmetric Groups

181

G
F q

P
rg

1
2

3
4

5
6

7
8

M
1
1

F 2
L
in

10
0

20
A

n
i

19
0

13
0

38
0

G
R

B
10

10
10

J
1

F 4
L
in

18
0

30
70

80
12

0
A

n
i

15
65

0
27

90
15

78
0

18
01

00
35

68
0

G
R

B
-

-
-

-
-

F 3
L
in

0
10

A
n
i

10
10

G
R

B
0

10
U

3
(3

)
F 2

L
in

30
70

60
A

n
i

18
87

0
97

34
0

10
60

00
G

R
B

57
0

28
10

34
40

F 9
L
in

17
0

48
0

14
0

14
0

14
0

14
0

13
0

13
0

A
n
i

42
20

10
G

R
B

-
-

-
-

-
-

-
-

L
3
(3

)
F 2

L
in

10
10

10
A

n
i

18
0

12
0

39
0

G
R

B
10

10
10

F 3
L
in

21
0

11
0

90
90

80
80

90
80

A
n
i

93
50

80
22

49
90

83
49

0
10

44
00

31
57

0
29

95
0

35
09

0
37

14
0

G
R

B
81

0
10

10
10

10
10

10
14

0
L

2
(7

)
F 2

L
in

10
10

10
A

n
i

31
0

23
0

23
0

G
R

B
10

10
10

F 3
L
in

0
0

A
n
i

10
0

G
R

B
10

0

T
a
b
l
e

5
.5

.
M

in
im

al
R

es
ol

u
ti

on
C

om
p
ar

is
on

s:
O

th
er

G
ro

u
p
s

182

G Fq Prg 1

161 F2 Lin 80
Ani 6410
GRB 5400

162 F2 Lin 20
Ani 580
GRB 20

163 F2 Lin 20
Ani 8620
GRB 1400

164 F2 Lin 40
Ani 810
GRB 60

165 F2 Lin 10
Ani 7090
GRB 10

166 F2 Lin 10
Ani 3890
GRB 230

167 F2 Lin 270
Ani 29284670
GRB 1073260

168 F2 Lin 80
Ani 331390
GRB 143010

169 F2 Lin 80
Ani 2068240
GRB 50890

271 F3 Lin 170
Ani 69024150
GRB 1254790

272 F3 Lin 30
Ani 542560
GRB 16140

Table 5.6. Minimal Resolution Comparisons: p-Groups

183

Appendix A

Timings

In this Appendix, we include the timings for the computations that we completed

using our the programs for the implementations of the algorithms given in this disser-

tation in GAP. All of the computations were done using GAP4r4 on an AMD Opteron

X86_64 2 gigahertz processor with 8 gigabytes of RAM. The operating system is

Linux 2.4.24. All timings are given in terms of milliseconds (ms) where the oper-

ating system only records to the nearest 10 ms. All groups are referred to by their

name in the Atlas of Finite Groups [CCN+85].

A.1 Gröbner Basis Computations

In Chapter 3 we gave an algorithm to compute a Gröbner basis G for a basic algebra B.

Below we give timings and results of the computations done in GAP. The information

that we provide is the name of the group G that corresponds to the basic algebra B,

the characteristic of the splitting field for B (Prime), the time in milliseconds (ms)

as timed in GAP, the size of the Gröbner basis G, and the dimension of the basic

algebra B.

184

Group Prime Time (ms) Size G DimkB

A4 2 10 11 12
3 0 1 3

A5 2 10 7 18
3 10 2 6
5 0 5 7

A6 2 10 7 34
3 10 31 36
5 0 5 7

A7 2 0 9 19
3 20 39 36
5 0 8 14
7 0 9 11

A8 2 4190 235 226
3 10 30 46
5 0 8 14
7 10 8 11

A9 2 9760 308 296
3 5510 295 166
5 0 8 14
7 10 14 22

A10 2 80370 549 646
3 4860 281 166
5 650 131 121
7 10 16 22

A11 2 173320 828 562
3 24880 417 372
5 420 108 121
7 0 16 22
11 10 15 19

A12 3 12913600 3155 1781
5 1950 189 178
7 0 14 22
11 0 15 19

Table A.1. Gröbner Basis Timings: Alternating Groups

185

Group Prime Time (ms) Size G DimkB

S3 2 0 1 2
3 0 2 6

S4 2 0 8 11
3 0 2 6

S5 2 0 5 19
3 10 2 6
5 0 8 14

S6 2 70 58 68
3 20 37 51
5 10 8 14

S7 2 10 28 38
3 30 41 51
5 10 8 14
7 0 14 22

S8 2 25670 463 289
3 0 30 46
5 0 10 14
7 0 16 22

S9 2 31010 487 370
3 22370 426 332
5 0 10 14
7 0 14 22

S10 2 2848870 2037 1292
3 24980 440 332
5 1970 186 183
7 0 16 22

S11 2 4797870 2581 1124
3 27530 445 372
5 1640 172 178
7 0 16 22
11 10 30 38

Table A.2. Gröbner Basis Timings: Symmetric Groups

186

Group Prime Time (ms) Size G DimkB

M11 2 0 16 22
3 20 32 83
5 0 4 20
11 0 9 25

M12 2 3290 249 134
3 480 113 163
5 0 8 14
11 0 14 19

J1 2 80 57 82
3 0 2 6
5 10 2 10
7 10 14 22
11 10 30 38

M22 2 166230 750 799
3 20 37 51
5 10 8 14
7 0 8 11
11 0 9 29

J2 2 829810 1305 1592
3 1570 175 204
5 250 102 72
7 10 16 22

M23 2 2373270 1879 1513
3 20 33 81
5 0 4 20
7 0 8 11
11 10 9 29

HS 2 11844960 2676 2462
3 70 57 75
5 91440 669 444
7 0 14 22
11 10 14 19

J3 2 1087280 1455 1169
3 1308710 1428 1754
5 0 4 7

M24 3 1670 175 213
5 0 8 14
7 0 9 11

McL 2 308650 923 1004
5 330930 1056 788
7 0 5 14

Table A.3. Gröbner Basis Timings: Sporadic Groups

187

Group Prime Time (ms) Size G DimkB

L2(7) 2 0 11 16
3 0 2 6
7 0 7 11

L3(3) 2 10 16 22
3 330 98 133
13 0 8 13

L2(8) 2 50 43 92
3 0 5 9
7 0 2 14

U3(3) 2 10 21 108
3 1190 166 145
7 10 5 14

U3(4) 2 1638310 1700 1306
3 10 2 6
5 10 19 72
13 0 5 22

U3(5) 2 10 10 67
3 100 27 41
5 33920 480 279
7 0 5 14

U4(2) 2 12370 329 318
3 3900 241 163
5 0 8 14

Table A.4. Gröbner Basis Timings: Classical Groups

188

A.2 Projective Resolutions

In the next pages we give timing comparisons for the projective resolutions up to

degree n = 20 for many alternating groups, symmetric groups, sporadic groups, and

classical groups. The method used is the linear algebra approach which we discovered

was far superior to the Anick-Green Gröbner basis method in terms of timings. We

make these computations for each PIM (for only the first 10 PIMs if there are more

than 10) and record the timing in milliseconds for each of the PIMs given by its

number according to its position in the basic algebra B.

189

G
p

1
2

3
4

5
6

7
8

9
10

A
4

2
63

0
62

0
63

0
3

0
A

5
2

19
0

20
40

3
20

10
5

20
20

A
6

2
16

0
10

20
3

12
0

17
50

11
0

22
40

5
10

10
A

7
2

20
0

35
0

10
3

13
40

12
60

13
00

13
00

5
10

10
20

10
7

10
20

20
A

8
2

39
77

20
10

70
80

0
16

82
70

16
88

50
26

41
50

16
97

70
17

04
00

3
58

0
56

0
19

70
58

0
55

0
5

10
20

10
10

7
10

20
10

A
9

2
30

81
40

21
75

90
90

79
0

49
76

50
43

70
42

60
27

58
30

3
80

54
0

56
67

0
41

84
0

25
65

00
14

77
90

5
20

10
10

0
7

30
20

30
20

20
10

A
1
0

2
11

34
89

70
25

09
79

0
30

55
50

20
79

88
0

38
22

60
13

68
0

50
13

00
3

63
06

0
33

13
89

49
16

20
20

14
70

91
99

0
5

11
20

23
40

43
30

27
10

29
0

28
0

20
00

21
20

20
80

10
13

0
7

10
20

30
20

30
20

A
1
1

3
79

08
0

59
67

60
97

23
0

61
31

10
79

87
0

22
70

80
70

27
0

21
27

50
62

82
30

33
96

20
5

13
40

11
12

0
22

60
25

10
45

40
22

70
27

10
11

90
11

90
19

40
7

20
30

10
20

10
20

11
0

40
30

30
40

T
a
b
l
e

A
.5

.
M

in
im

al
R

es
ol

u
ti

on
T

im
in

gs
:

A
lt

er
n
at

in
g

G
ro

u
p
s

190

G
p

1
2

3
4

5
6

7
8

9
10

S
4

2
32

0
26

0
3

0
10

S
5

2
32

0
10

3
0

10
5

10
10

10
20

S
6

2
28

26
0

18
90

18
40

3
37

0
38

0
53

0
90

44
0

5
10

10
10

20
S

7
2

38
61

0
74

66
0

93
0

3
71

0
67

0
66

0
73

0
24

10
5

10
10

10
10

7
20

40
10

10
30

20
S

8
2

29
96

00
32

50
25

0
17

44
59

0
39

58
29

0
28

97
50

3
50

0
18

10
49

0
53

0
50

0
5

10
10

10
20

7
20

30
10

20
30

30
S

9
2

81
23

68
0

11
81

93
20

52
70

14
75

90
10

80
55

20
3

79
93

0
80

59
0

61
03

0
23

11
30

43
89

0
45

53
0

61
20

0
23

08
30

13
89

40
13

95
60

5
20

20
10

10
7

20
30

30
10

0
30

S
1
0

3
66

03
0

19
24

20
31

34
20

66
26

0
31

87
20

19
24

60
46

30
90

45
98

20
94

77
0

94
61

0
5

11
90

25
50

46
00

46
70

11
80

25
20

28
60

82
0

28
80

11
56

0
7

30
10

40
20

30
30

T
a
b
l
e

A
.6

.
M

in
im

al
R

es
ol

u
ti

on
T

im
in

gs
:

S
y
m

m
et

ri
c

G
ro

u
p
s

191

G
p

1
2

3
4

5
6

7
8

9
10

M
1
1

2
16

0
20

46
0

3
27

0
28

0
34

0
21

0
27

0
32

0
60

5
20

20
10

10
11

30
20

10
20

40
M

1
2

2
10

15
60

29
15

60
57

49
0

3
45

30
42

20
44

10
16

0
16

00
16

0
16

20
72

10
5

10
10

20
10

11
30

20
40

0
40

J
1

2
35

10
90

16
40

16
00

33
10

3
10

10
5

10
10

7
20

20
20

20
20

20
11

50
70

60
20

20
50

60
30

50
40

M
2
2

2
32

17
16

0
24

78
97

0
32

22
61

0
27

03
11

0
83

47
93

0
73

65
69

0
73

43
93

0
3

80
43

0
36

0
44

0
37

0
5

20
20

10
10

7
20

20
10

11
30

20
20

30
20

J
2

2
93

72
00

67
62

97
0

82
39

20
83

67
50

23
96

80
0

24
03

51
0

94
01

80
3

24
0

23
0

30
0

64
60

28
0

63
90

54
10

73
20

5
65

0
61

50
40

0
53

60
37

60
13

90
7

10
30

20
20

20
30

M
2
3

2
34

06
94

0
15

38
75

0
37

76
70

18
20

28
0

51
72

60
91

98
30

11
10

79
0

22
53

03
0

56
49

70
3

18
20

18
20

48
0

57
0

46
0

49
0

49
0

5
10

10
10

10
7

10
10

30
11

30
10

10
10

30

T
a
b
l
e

A
.7

.
M

in
im

al
R

es
ol

u
ti

on
T

im
in

gs
:

S
p
or

ad
ic

G
ro

u
p
s

192

G
p

1
2

3
4

5
6

7
8

9
10

H
S

2
32

93
46

30
42

67
39

60
23

63
59

0
20

79
12

50
22

95
86

20
62

42
19

0
3

32
0

32
0

13
60

80
40

0
29

0
80

5
32

61
10

12
06

00
19

08
0

70
38

0
69

81
0

11
19

60
11

18
90

31
57

70
11

81
60

70
75

00
7

30
10

30
20

20
30

11
40

50
30

20
30

J
3

2
18

10
90

28
35

20
28

31
10

40
94

50
28

89
70

41
01

0
29

47
40

18
53

84
0

89
27

70
89

75
80

3
14

46
01

80
11

50
74

00
11

38
68

80
11

36
51

0
26

93
20

26
68

60
46

77
70

47
24

20
5

10
10

17
20

50
10

30
50

50
60

30
19

60
80

50
11

0
20

12
0

10
0

10
0

30
M

2
4

3
45

10
36

70
54

0
28

30
22

80
21

70
25

60
5

10
20

10
10

7
0

20
20

11
30

10
20

20
30

20
70

30
30

40
M
cL

2
84

21
90

92
46

0
25

72
94

0
39

48
40

25
86

44
0

22
03

74
0

23
06

96
0

23
14

44
0

5
57

19
0

56
99

0
21

58
50

81
51

0
22

26
0

10
66

40
25

25
10

83
61

0
17

36
30

64
66

0
7

10
10

10

T
a
b
l
e

A
.8

.
M

in
im

al
R

es
ol

u
ti

on
T

im
in

gs
:

S
p
or

ad
ic

G
ro

u
p
s

C
on

t.

193

G
p

1
2

3
4

5
6

7
8

9
10

L
2
(7

)
2

50
0

36
0

38
0

3
0

10
7

30
10

10
L

2
(8

)
2

16
93

0
11

50
11

10
11

00
70

80
80

3
10

10
7

10
10

L
3
(3

)
2

17
0

30
49

0
3

53
40

24
00

20
70

19
30

20
80

19
50

19
60

21
00

13
10

20
40

U
3
(3

)
2

67
0

16
70

15
60

3
19

90
29

60
54

0
56

0
67

0
54

0
52

0
50

0
7

10
30

10
U

3
(4

)
2

16
92

80
21

39
20

21
14

40
21

45
00

21
28

30
19

12
30

18
78

60
18

85
60

18
76

20
25

19
0

25
14

0
21

25
0

21
19

0
21

14
0

21
08

0
3

10
20

5
29

20
69

0
18

20
13

20
10

20
U

3
(5

)
2

17
0

30
50

3
52

0
18

50
52

0
53

0
53

0
5

25
68

0
11

24
90

21
89

70
13

75
0

13
85

0
31

87
0

32
21

0
15

25
30

7
10

10
10

U
4
(2

)
2

35
97

50
12

30
41

0
96

10
0

93
80

0
21

82
30

93
19

0
93

43
0

3
12

04
00

62
38

0
26

80
0

33
94

0
11

80
40

5
20

20
10

10

T
a
b
l
e

A
.9

.
M

in
im

al
R

es
ol

u
ti

on
T

im
in

gs
:

C
la

ss
ic

al
G

ro
u
p
s

194

A.3 Cohomology Ring

In this section, we include the results of timings for the computation un
k=0H

k (G, k).

Timings are all recorded in milliseconds. For each group G we list the prime p for the

characteristic of the splitting field, degree n to which the calculation was completed,

the time spent in finding the generators, the time spent rewriting the basis ofH∗ (G, k)

as a basis in terms of the generators found, time spent computing a Gröbner basis,

and the total time for all three steps in the calculation. It is assumed that a projective

resolution for the trivial module has already been computed.

Group Prime n Gen time Spin Time GB Time Total

A4 2 40 20250 660 90 21000
3 100 110 640 10 760

A5 2 100 75630 18110 3480 97220
3 100 90 200 0 290
5 100 90 200 0 290

A6 2 40 6790 750 110 7650
3 30 11770 280 200 12250
5 100 90 200 10 300

A7 2 30 3960 320 30 4310
3 30 30290 220 200 30710
5 100 70 60 0 130
7 100 80 90 10 180

A8 2 14 3355170 170 50 3355390
3 30 7770 60 10 7840
5 100 70 50 10 130
7 100 90 90 0 180

A9 2 14 5846890 180 70 5847140
3 20 2187400 180 410 2187990
5 100 70 60 0 130
7 100 70 30 0 100

A10 2 12 13480200 110 10 13480320
3 20 3687140 170 380 3687690
5 40 24380 100 60 24540
7 100 70 30 0 100

Table A.10. Cohomology Ring Timings: Alternating Groups

195

Group Prime n Gen time Spin Time GB Time Total

S4 2 100 610230 54510 13190 677930
3 100 90 200 10 300

S5 2 40 28920 3350 740 33010
3 100 80 200 0 280
5 100 70 60 0 130

S6 2 20 6970350 4160 410 6974920
3 50 20240 540 40 20820
5 100 70 60 0 130

S7 2 14 130560 330 20 130910
3 40 23530 210 10 23750
5 100 90 60 0 150
7 100 70 30 0 100

S8 2 12 79921250 800 120 79922170
3 40 20930 180 20 21130
5 100 80 60 0 140
7 100 70 30 0 100

S9 3 20 383910 50 10 383970
5 100 70 60 10 140
7 100 70 30 0 100

S10 3 20 673030 60 10 673100
5 30 3480 20 0 3500
7 100 70 30 0 100

Table A.11. Cohomology Ring Timings: Symmetric Groups

196

Group Prime n Gen time Spin Time GB Time Total

M11 2 100 105010 6530 560 112100
3 100 236090 2310 1070 239470
5 100 80 60 0 140
11 100 80 30 10 120

M12 2 12 1046820 70 30 1046920
3 30 128000 300 1700 130000
5 100 70 70 0 140
11 100 80 40 0 120

J1 2 30 261230 860 70 262160
3 100 90 190 10 290
5 100 100 190 10 300
7 100 70 30 10 110
11 100 60 20 0 80
19 100 70 40 0 110

M22 2 15 36335560 80 90 36335730
3 50 40360 470 340 41170
5 100 70 40 10 120
7 100 70 80 0 150
11 100 120 40 0 160

J2 2 10 4813910 20 10 4813940
3 30 136220 130 130 136480
5 40 15930 120 0 16050
7 100 60 30 0 90

M23 2 14 358760 30 0 358790
3 40 20950 90 50 21090
5 100 80 60 0 140
7 100 80 90 0 170
11 100 80 50 0 130
23 100 60 10 0 70

HS 3 50 21410 190 110 21710
5 30 678010 120 270 678400
7 100 80 30 0 110
11 100 80 40 0 120

J3 3 14 18812530 80 150 18812760
5 100 80 160 10 250
17 100 60 20 0 80
19 100 60 10 0 70

McL 2 30 88676840 160 30 88677030
5 40 401610 110 80 401900
7 100 90 90 0 180
11 100 70 50 0 120

Table A.12. Cohomology Ring Timings: Sporadic Groups

197

Group Prime n Gen time Spin Time GB Time Total

L2(7) 2 50 39020 1430 180 40630
3 100 130 160 0 290
7 100 120 70 10 200

L3(3) 2 40 4730 210 20 4960
3 30 88140 240 1670 90050
13 100 110 70 10 190

L2(8) 2 20 134560 610 1300 136470
3 100 90 200 0 290
7 100 100 200 0 300

U3(3) 2 30 39130 100 10 39240
3 40 48090 340 230 48660
7 100 70 90 10 170

U3(4) 2 14 770580 50 440 771070
3 100 80 210 0 290
5 30 18060 110 0 18170
13 100 110 90 0 200

U3(5) 2 30 1640 80 10 1730
3 30 12710 70 70 12850
5 20 193390 50 370 193810
7 100 80 120 10 210

U4(2) 2 14 1542480 150 10 1542640
3 20 544960 60 10 545030
5 100 110 50 0 160

Table A.13. Cohomology Ring Timings: Classical Groups

198

A.4 Ext-Algebra

In this section we include timings for the Ext-algebra E (kG) up to a given degree

n. Timings are all recorded in milliseconds. For each group G we list the prime

p for the characteristic of the splitting field, degree n to which the calculation was

completed, the time spent in finding the generators, the time spent rewriting the basis

of un
k=0 ui,j Extk (Si, Sj) as a basis in terms of the generators found, the time spent

computing a Gröbner basis G and the total time for all three steps in the calculation.

It is assumed that a projective resolution for all of the simple modules has already

been computed.

Group Prime n Gen time Spin Time GRB Time Total

A4 2 40 43970 556240 5360 605570
3 100 110 4200 280 4590

A5 2 100 86160 168530 24970 279660
3 100 230 8850 620 9700
5 100 390 8140 790 9320

A6 2 40 8550 5460 1840 15850
3 30 35190 6770 193020 234980
5 100 460 8100 820 9380

A7 2 40 28320 255510 10220 294050
3 30 130040 26450 558770 715260
5 100 900 18010 2330 21240
7 100 960 13200 2000 16160

A8 2 8 505680 7780 270590 784050
3 30 111810 25910 103190 240910
5 100 800 18110 2340 21250
7 100 890 13330 1940 16160

A9 3 15 23698550 23360 23693940 47415850
5 100 790 18190 2550 21530
7 100 1910 31170 9250 42330

A10 3 15 51683270 32060 37055780 88771110
5 20 204600 21090 20743630 20969320
7 40 740 4100 1880 6720

Table A.14. Ext Algebra Timings: Alternating Groups

199

Group Prime n Gen time Spin Time GRB Time Total

S4 2 40 38910 288880 8970 336760
3 100 220 8930 530 9680

S5 2 40 29620 15530 3930 49080
3 100 220 9130 590 9940
5 100 820 18860 2300 21980

S6 2 20 7684750 19460 79620 7783830
3 30 47570 11000 1010810 1069380
5 30 250 1210 260 1720

S7 2 10 52570 15510 6830 74910
3 20 45840 7900 370940 424680
5 30 250 1210 270 1730
7 30 540 2220 1630 4390

S8 2 6 570450 1980 22130 594560
3 30 113550 26650 98460 238660
5 30 240 1230 240 1710
7 30 560 2270 1200 4030

S9 3 6 143250 3120 240560 386930
5 30 240 1240 240 1720
7 30 550 2450 1530 4530

S10 5 20 304800 36530 63212620 63553950
7 30 590 2250 1230 4070

Table A.15. Ext Algebra Timings: Symmetric Groups

200

Group Prime n Gen time Spin Time GRB Time Total

M11 2 30 8640 82600 2880 94120
3 30 32890 13310 1372630 1418830
5 100 560 20340 1490 22390
11 100 1410 27110 7060 35580

M12 2 12 16514760 15120 179400 16709280
3 30 979680 42940 33315650 34338280
5 100 790 18630 2420 21840
11 100 3240 31300 12480 47020

J1 2 30 497960 25340 1213210 1736510
3 100 230 8920 600 9750
5 100 250 9060 590 9900
7 100 1870 32260 8830 42960
11 40 2440 11810 23420 37670
19 100 3030 40430 20480 63940

M22 3 30 48900 11000 897740 957640
5 40 310 2260 470 3040
7 40 360 1740 360 2460
11 40 450 2910 1230 4590

J2 3 20 248690 6790 1654450 1909930
5 24 295900 21860 1409550 1727310
7 40 740 4170 1880 6790

M23 3 30 147170 35220 896550 1078940
5 40 210 2310 200 2720
7 40 360 1890 370 2620
11 40 440 2890 1230 4560
23 100 5730 65390 106440 177560

HS 3 30 69930 13680 2253740 2337350
5 8 1675200 6850 13624910 15306960
7 30 680 1970 1500 4150
11 30 940 2690 2500 6130

J3 5 100 410 7860 800 9070
17 100 4690 53260 38310 96260
19 100 16610 109040 251970 377620

McL 2 8 2990780 3370 4747570 7741720
5 14 7960800 26390 330778490 338765680
7 100 640 12160 1580 14380
11 100 3220 30150 11670 45040

M24 5 100 1010 18280 2380 21670
7 100 930 13360 2020 16310
11 100 3920 55390 24940 84250
23 100 6210 76630 93570 176410

Table A.16. Ext Algebra Timings: Sporadic Groups

201

Group Prime n Gen time Spin Time GRB Time Total

L2(7) 2 40 44710 604520 9980 659210
3 100 250 8870 620 9740
7 100 1050 13430 2080 16560

L3(3) 2 40 22540 250510 7840 280890
3 30 774520 62010 17148860 17985390
13 100 1110 13450 1820 16380

L2(8) 2 20 153330 5590 1782330 1941250
3 100 450 8390 740 9580
7 100 300 9020 580 9900

U3(3) 2 30 735220 12230 40600 788050
3 40 188326 26269 5925881 6140476
7 100 650 12460 1530 14640

U3(4) 2 5 394620 1500 303940 700060
3 100 250 8830 600 9680
5 20 104450 3480 36470 144400
13 100 730 12450 1550 14730

U3(5) 2 30 2610 1300 2520 6430
3 30 98640 22800 46440 167880
5 8 881660 9680 680770 1572110
7 100 650 12650 1510 14810

U4(2) 2 10 2010410 3690 2324320 4338420
3 10 570360 2840 2670000 3243200
5 100 940 18630 2450 22020

Table A.17. Ext Algebra Timings: Classical Groups

202

Appendix B

Data Structures

Before we describe the implementations of our program in GAP we describe the data

structures that are used. We do this first so that we can provide illustrative examples

while describing our programs.

B.1 Basic Algebras

The main object that we will do our computations with is a basic algebra B. We are

supplied with a faithful representation of the basic algebra in terms of matrices. The

examples we include in chapter 5 are for the principal block of the basic algebra B.

In GAP this is a record. It contains the following information:

• basicalg.field - the splitting field k for the basic algebra

• basicalg.group - the name of the original group G such that kG ∼=Morita B.

• basicalg.generators - names of the vertices (idempotents) and edges (arrows) in

the Ext-quiver.

• basicalg.npims - number of vertices in the Ext-quiver, also the number of PIMs

in eBe.

• basicalg.pimnames - names of the PIMs in eBe given as strings such as “1a” to

represent the PIM corresponding to the 1a in the representation of G. Note to

see the original PIM names before condensation see Tom Hoffman’s webpage

math.arizona.edu/˜hoffmant.

• basicalg.cartan - the Cartan matrix

203

• basicalg.matrices - This portion of the record contains as subrecords the names

of the vertices (preceded by “pim”) of the Ext-quiver. Contained in each of

these subrecords are the compressed matrices which generate the basic algebra.

Under the pim subrecord, after the matrices, is a subrecord spinning tree which

is the spinning tree for this PIM in the basic algebra. The spinning tree is a data

structure to keep track efficiently of the action of the generators. The spinning

tree record is a list of records, where each record describes how to construct

a basis vector as the image of the homomorphisms given. This construction

was done as a spinning tree but has been reordered by the record perm. It

contains a k-basis for each of the PIMs. The words in the basis are ordered in

terms of where they end, basicalg.matrices.(pim).spinningtree[i].ende.

This makes it easier to look up information later just by consulting the Cartan

matrix.

The following is an example of basic algebra record for the alternating group, S4

for the field GF(2). Note in the record in GAP that the generators are strings such

as “1a1a1”, however we drop the quotations here. Also we record 0*Z(2) as 0 and

Z(2)^0 as 1.

gap> basicalg;

rec(group:=s4,generators:=[1a,2a,1a1a1,1a2a1,2a1a1,2a2a1],

npims:=2, pimnames:=[1a,2a], cartan:=[[4,2],[2,3]], field:=GF(2),

adjmat:=[[1,1],[1,1]], 1a:=rec(start:=1,ende:=1,name:=id1a),

2a:=rec(start:=2,ende:=2,name:=id2a),

1a1a1:=rec(start:=1,ende:=1,name:=1a1a1),

1a2a1:=rec(start:=2,ende:=1,name:=1a2a1),

2a1a1:=rec(start:=1,ende:=2,name:=2a1a1),

2a2a1:=rec(start:=2,ende:=2,name:=2a2a1),

matrices:=rec(

pim1a:=rec(

1:=[[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],

[0,0,0,1,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]],

2:=[[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],

[0,0,0,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]],

204

3:=[[0,1,0,0,0,0],[0,0,0,0,0,0],[0,0,0,1,0,0],

[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]],

4:=[[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],

[0,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0]],

5:=[[0,0,0,0,1,0],[0,0,0,0,0,1],[0,0,0,0,0,0],

[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]],

6:=[[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],

[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]],

perm:=[1,2,5,6,3,4],

spinningtree:=[

rec(ende:=1,name:=[],tree:=[]),

rec(ende:=1,name:=[1a1a1],tree:=[1,3]),

rec(ende:=1,name:=[2a1a1,1a2a1],tree:=[5,4]),

rec(ende:=1,name:=[1a1a1,2a1a1,1a2a1],tree:=[6,4]),

rec(ende:=2,name:=[2a1a1],tree:=[1,5]),

rec(ende:=2,name:=[1a1a1,2a1a1],tree:=[2,5])]),

pim2a:=rec(

1:=[[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,0],

[0,0,0,0,0],[0,0,0,0,0]],

2:=[[0,0,0,0,0],[0,0,0,0,0],[0,0,1,0,0],

[0,0,0,1,0],[0,0,0,0,1]],

3:=[[0,1,0,0,0],[0,0,0,0,0],[0,0,0,0,0],

[0,0,0,0,0],[0,0,0,0,0]],

4:=[[0,0,0,0,0],[0,0,0,0,0],[1,0,0,0,0],

[0,0,0,0,0],[0,0,0,0,0]],

5:=[[0,0,0,0,1],[0,0,0,0,1],[0,0,0,0,0],

[0,0,0,0,0],[0,0,0,0,0]],

6:=[[0,0,0,0,0],[0,0,0,0,0],[0,0,0,1,0],

[0,0,0,0,1],[0,0,0,0,0]],

perm:=[3,1,4,2,5],

spinningtree:=[

rec(ende:=1,name:=[1a2a1],tree:=[3,4]),

rec(ende:=1,name:=[1a2a1,1a1a1],tree:=[1,3]),

rec(ende:=2,name:=[],tree:=[]),

rec(ende:=2,name:=[2a2a1],tree:=[3,6]),

rec(ende:=2,name:=[1a2a1,2a1a1],tree:=[1,5])])))

From this record, we see we are looking at the field F2, a basic algebra with 6 gen-

erators, 2 PIMs of k-dimension 6 and 5 respectively, and have 4 arrows. Thus the

205

Ext-quiver is given as:

1a1a1a1 55
2a1a1 //

2a
1a2a1

oo 2a2a1ii

The arrows (maps between PIMs) are given as a string that first tells the terminus

and then the origin of the arrow. For example, “1a2a1” is the map from PIM 2a to

PIM 1a.

B.2 Gröbner Basis Information

This file is called grbinf. It is the result of running the program GrbRecord. It is a

record of the following:

• grbinfo.groupname - the name of the group for our basic algebra B ∼=Morita kG.

• grbinfo.field - the splitting field for B.

• grbinfo.generators - the generators of the basic algebra.

• grbinfo.pimnames - the PIM names of the basic algebra.

• grbinfo.npims - the number of PIMs for the basic algebra.

• grbinfo.cartan - the Cartan matrix of the basic algebra.

• grbinfo.adjmat - The adjacency matrix of the ext-quiver.

• grbinfo.nontips - This is the basis for the basic algebra extracted from B and

reordered length lexicographically as the basic algebra is ordered PIM by PIM

and by endings of words, not length lexicographically.

• grbinfo.tips - This is just a list of the tips.

• grbinfo.tipsrecords - This is the set of tips as well as a record of information for

the start and end of the tips.

206

• grbinfo.minsharps - the set of MinSharps for the Gröbner basis G.

For example, the grbinfo for S4 in characteristic 2 is as follows:

gap> grbinfo; rec(groupname:=s4,field:=GF(2),

generators:=[1a,2a,1a1a1,1a2a1,2a1a1,2a2a1],pimnames:=[1a,2a],

1a:=rec(start:=1,ende:=1,name:=id1a),

2a:=rec(start:=2,ende:=2,name:=id2a),

1a1a1:=rec(start:=1,ende:=1,name:=1a1a1),

1a2a1:=rec(start:=2,ende:=1,name:=1a2a1),

2a1a1:=rec(start:=1,ende:=2,name:=2a1a1),

2a2a1:=rec(start:=2,ende:=2,name:=2a2a1),

npims:=2,cartan:=[[4,2],[2,3]],adjmat:=[[1,1],[1,1]],

nontips:=[

rec(name:=[1a],length:=0,ende:=1,start:=1,position:=1),

rec(name:=[2a],length:=0,ende:=2,start:=2,position:=3),

rec(name:=[1a1a1],length:=1,ende:=1,start:=1,position:=2),

rec(name:=[2a1a1],length:=1,ende:=2,start:=1,position:=5),

rec(name:=[1a2a1],length:=1,ende:=1,start:=2,position:=1),

rec(name:=[2a2a1],length:=1,ende:=2,start:=2,position:=4),

rec(name:=[2a1a1,1a2a1],length:=2,ende:=1,start:=1,position:=3),

rec(name:=[1a1a1,2a1a1],length:=2,ende:=2,start:=1,position:=6),

rec(name:=[1a2a1,1a1a1],length:=2,ende:=1,start:=2,position:=2),

rec(name:=[1a2a1,2a1a1],length:=2,ende:=2,start:=2,position:=5),

rec(name:=[1a1a1,2a1a1,1a2a1],length:=3,ende:=1,start:=1,

position:=4)],

nontiplist:=[[1a],[2a],[1a1a1],[2a1a1],[1a2a1],[2a2a1],[2a1a1,1a2a1],

[1a1a1,2a1a1],[1a2a1,1a1a1],[1a2a1,2a1a1],[1a1a1,2a1a1,1a2a1]],

tips:=[[1a1a1,1a1a1],[2a1a1,2a2a1],[2a2a1,1a2a1],[2a2a1,2a2a1],

[2a1a1,1a2a1,1a1a1],[2a1a1,1a2a1,2a1a1],[1a2a1,1a1a1,2a1a1],

[1a2a1,2a1a1,1a2a1]],

tipsrecords:=[

rec(name:=[1a1a1,1a1a1],basis:=[1a1a1],position:=2,

generator:=1a1a1,ende:=1,start:=1),

rec(name:=[2a1a1,2a2a1],basis:=[2a1a1],position:=5,

generator:=2a2a1,ende:=2,start:=1),

rec(name:=[2a2a1,1a2a1],basis:=[2a2a1],position:=4,

generator:=1a2a1,ende:=1,start:=2),

rec(name:=[2a2a1,2a2a1],basis:=[2a2a1],position:=4,

generator:=2a2a1,ende:=2,start:=2),

rec(name:=[2a1a1,1a2a1,1a1a1],basis:=[2a1a1,1a2a1],position:=3,

207

generator:=1a1a1,ende:=1,start:=1),

rec(name:=[2a1a1,1a2a1,2a1a1],basis:=[2a1a1,1a2a1],position:=3,

generator:=2a1a1,ende:=2,start:=1),

rec(name:=[1a2a1,1a1a1,2a1a1],basis:=[1a2a1,1a1a1],position:=2,

generator:=2a1a1,ende:=2,start:=2),

rec(name:=[1a2a1,2a1a1,1a2a1],basis:=[1a2a1,2a1a1],position:=5,

generator:=1a2a1,ende:=1,start:=2)],

minsharps:=[

[[Z(2)^0,1a1a1,1a1a1]],

[[Z(2)^0,2a1a1,2a2a1]],

[[Z(2)^0,2a2a1,1a2a1]],

[[Z(2)^0,2a2a1,2a2a1],[Z(2)^0,1a2a1,2a1a1]],

[[Z(2)^0,2a1a1,1a2a1,1a1a1],[Z(2)^0,1a1a1,2a1a1,1a2a1]],

[[Z(2)^0,2a1a1,1a2a1,2a1a1]],

[[Z(2)^0,1a2a1,1a1a1,2a1a1],[Z(2)^0,1a2a1,2a1a1]],

[[Z(2)^0,1a2a1,2a1a1,1a2a1]]])

The polynomials in minsharp correspond to the following set of 8 elements:

{1a1a1 ∗ 1a1a1, 2a1a1 ∗ 2a2a1, 2a2a1 ∗ 2a2a1 + 1a2a1 ∗ 2a1a1,

2a2a1 ∗ 1a2a1 ∗ 1a1a1 + 1a1a1 + 2a1a1 ∗ 1a2a1,

2a1a1 ∗ 1a2a1 ∗ 2a1a1, 1a2a1 ∗ 1a1a1 ∗ 2a1a1 + 1a2a1 ∗ 2a1a1,

1a2a1 ∗ 2a1a1 ∗ 1a2a1}.

B.3 Anick Computation Record

Converted Gröbner Basis Information

To run our program, we need to compute normal forms and thus do division.

Therefore in order to make a more efficient organization of the grbinfo data, we

convert all of the grbinfo into more useful data. For example, we convert the entry

[Z(2)^0,2a2a1,2a2a1],[Z(2)^0,1a2a1,2a1a1]], i.e. 2a2a1*2a2a1+1a2a1*2a1a1,

to [[[4,4],[2,3]],[Z(2)^0,Z(2)^0]]. We replace the generator name with its

position in the arrows that are given in the list of generators in the basic algebra.

We then write down the string of monomials as one entry in our list followed by the

208

corresponding coefficients of the other. We will declare that [[],[]] is the zero in

the field we are working in. If we would like a constant, then we have [[],[Z(2)^0]]

= 1, for example.

We will also add to our grbinfo the information that comes from the fact that we

are working in a path algebra. For example we will also add all incompatible arrows,

that is start of second arrow does not equal end of first to the data for the minsharps.

Therefore we now end up with what we label minsharpsplus:

[[[[1,1]],[Z(2)^0]], [[[3,4]],[Z(2)^0]], [[[4,2]],[Z(2)^0]],

[[[4,4],[2,3]],[Z(2)^0,Z(2)^0]], [[[3,2,1],[1,3,2]],[Z(2)^0,Z(2)^0]],

[[[3,2,3]],[Z(2)^0]], [[[2,1,3],[2,3]],[Z(2)^0,Z(2)^0]],

[[[2,3,2]],[Z(2)^0]], [[[1,2]],[Z(2)^0]], [[[1,4]],[Z(2)^0]],

[[[2,2]],[Z(2)^0]], [[[2,4]],[Z(2)^0]], [[[3,1]],[Z(2)^0]],

[[[3,3]],[Z(2)^0]], [[[4,1]],[Z(2)^0]], [[[4,3]],[Z(2)^0]]].

Final Output in Resolution

While working on the computations in the Anick-Green resolution, we not only

have a polynomial in the generators, but also a corresponding terminus which index

the appropriate PIMs. For example in the resolution of S4 we have the word eτ(c)ba+

eτ(a)cb. We keep track of this as

[[[3],[[[2,1]],[Z(2)^0]]],[[1],[[[3,2]],[Z(2)^0]]]].

We combine all of the parts of our word according to the terminus. Thus as our

example had two different termini, we had a list of size 2. Each part of this list was

then of size 2 with the first part of the list being the terminus and the second part

being the polynomial. To denote the zero word we will use [[],[[],[]]]. To denote

just a terminus such as τ (a), we use [[1],[[],[Z(2)^0]]] for example.

The final resolution once computed will have the following records for each of

steps in the resolution. The only information that is of ultimate importance is the

matrix and the generators. The other information shows how we arrived at each step

along the way and is used if we wish to compute the next step in the resolution. The

data structure includes:

209

• p[n].Istar - The Gröbner basis for the one-point extension for that step in the

resolution.

• p[n].T - This is a list of the tips in Istar including where it came from in previous

level so we are able to compute higher overlaps.

• p[n].T2star - We compute the higher overlaps and it is the .name entry, and

then we compute and store all of the information as in Theorem 3.18.

• p[n].redundancymat - Is a record of the generators after removing redundant

ones, the redundant generators, the original matrix before reduction, and the

reduced matrix.

• p[n].matrix - This is the map that we are interested in. It gives us ∂n.

B.4 Cohomology and Ext Records

Projective Resolutions

After using our program ProjectiveResolution, a list of records is returned.

Each of the records represent the projective modules in the resolution and also the

map given as a list of images of the idempotents. The record for each of the steps is

as follows:

• p[n].rowblocks - These are the idempotents for the PIMs in the image of the

map ∂n.

• p[n].generators - Gives a list of records which are images of the idempotents of

Pn in the resolution.

– p[n].generators[m].rowblocks - The idempotents for the PIMs in the image

of the map ∂n.

210

– p[n].generators[m].blockvector - A partitioned vector that gives the image

of the mth idempotent of Pn in Pn−1 under the map ∂n.

• p[n].columnblocks - This is a list of the idempotents for the projective indecom-

posable modules in Pn. They are the domain of the map ∂n.

gap> p[2];

rec(rowblocks:=[1,2],generators:=[

rec(blocks:=[1,2],blockvector:=[[0,1,0,0,0,0],[0,0,0,0,0]]),

rec(blocks:=[1,2],blockvector:=[[0,0,1,0,0,0],[0,1,0,0,0]]),

rec(blocks:=[1,2],blockvector:=[[0,0,0,0,0,0],[0,0,0,1,0]])],

columnblocks:=[1,1,2]).

This means that in the minimal resolution we have P2 → P1 is

ev1B ⊕ ev1B ⊕ ev2B
∂2−→ ev1B ⊕ ev2B

where the images of the idempotents are given by (ev1 , 0, 0) 7→ (1a1a1, 0), (0, ev1 , 0) 7→

(2a1a1 ∗ 1a2a1, 1a2a1 ∗ 1a1a1), and (0, 0, ev2) 7→ (0, 2a2a1).

Ext record

We first note that the cohomology record and Ext record are similar, thus we describe

only the Ext record.

• ext.group - The original group for the basic algebra for which we are computing

Ext.

• ext.field - The splitting field of the basic algebra.

• ext.generators - The generators for the Ext-algebra up to degree n.

• ext.pimnames - We label the idempotents from 1 to basicalg.npims.

• ext.n - This is the n such that we have
⊕n

k=1

⊕
i,j Extk (Si, Sj).

• ext.npims - Gives the number of pims.

211

• ext.basisforpims - This gives the basis written in terms of the generators.

• ext.actions - This gives the action of all of the standard basis elements on all of

the generators.

• ext.grb - This gives a Gröbner basis G for the relations ideal up to degree n

such that ⊕
i,j

n⊕
k=1

Extk
B (Si, Sj) ∼= 〈Generators of B〉/〈G〉.

• ext.homologydims - This is a m × m matrix where m is the number of pims.

The [i, j] entry of the matrix gives dimk Extr
kG(Si, Sj) for 1 ≤ r ≤ n as a list.

• ext.repnames - This gives the original name of the idempotents (condensed

PIMs) in the basic algebra.

Example We continue our example of S4 by looking at the Ext-algebra up to degree

n = 2.

rec(

group:=S4,field:=GF(2), generators:=

[[[1,1],[1,1]],[[1,2],[1,1]],[[2,1],[1,1]],[[2,2],[1,1]]],

pimnames:=["1","2"],n:=2,npims:=2,

basisforpims:=rec(

1:=[

rec(name:=[],start:=1,ende:=1,degree:=0),

rec(name:=[[[1,1],[1,1]]],start:=1,ende:=1,

degree:=1,vector:=[Z(2)^0]),

rec(name:=[[[1,2],[1,1]]],start:=1,ende:=2,

degree:=1,vector:=[Z(2)^0]),

rec(name:=[[[1,1],[1,1]],[[1,1],[1,1]]],start:=1,ende:=1,

degree:=2,vector:=[Z(2)^0,0*Z(2)]),

rec(name:=[[[2,2],[1,1]],[[1,2],[1,1]]],start:=1,ende:=2,

degree:=2,vector:=[Z(2)^0])],

2:=[

rec(name:=[],start:=2,ende:=2,degree:=0),

rec(name:=[[[2,1],[1,1]]],start:=2,ende:=1,

degree:=1,vector:=[Z(2)^0]),

212

rec(name:=[[[2,2],[1,1]]],start:=2,ende:=2,

degree:=1,vector:=[Z(2)^0]),

rec(name:=[[[1,2],[1,1]],[[2,1],[1,1]]],start:=2,ende:=2,

degree:=2,vector:=[Z(2)^0,Z(2)^0]),

rec(name:=[[[2,1],[1,1]],[[2,2],[1,1]]],start:=2,ende:=1,

degree:=2,vector:=[Z(2)^0]),

rec(name:=[[[2,2],[1,1]],[[2,2],[1,1]]],start:=2,ende:=2,

degree:=2,vector:=[0*Z(2),Z(2)^0])]),

actions:=[[

rec(start:=1,ende:=1,dims:=[1,2],

cupspaces:=[[[Z(2)^0]],[[Z(2)^0,0*Z(2)],[0*Z(2),0*Z(2)]]],

startnonzero:=1,v:=[(GF(2)^1),(GF(2)^2)],

s:=[VectorSpace(GF(2),[[Z(2)^0]]),VectorSpace(GF(2),

[[Z(2)^0,0*Z(2)],[0*Z(2),0*Z(2)]])],

gens:=[

rec(name:=[1,1],products:=[

[rec(size:=1,result:=[[Z(2)^0]]),

rec(size:=2,result:=[[Z(2)^0,0*Z(2)]])],

[rec(size:=1,result:=[]),

rec(size:=2,result:=[[0*Z(2)]])]],

number:=1)]),

rec(start:=1,ende:=2,dims:=[1,1],

cupspaces:=[[[Z(2)^0]],[[0*Z(2)],[Z(2)^0]]],

startnonzero:=1,v:=[(GF(2)^1),(GF(2)^1)],

s:=[VectorSpace(GF(2),[[Z(2)^0]]),VectorSpace(GF(2),

[[0*Z(2)],[Z(2)^0]])],

gens:=[

rec(name:=[1,1],products:=[

[rec(size:=1,result:=[]),

rec(size:=2,result:=[[0*Z(2),0*Z(2)]])],

[rec(size:=1,result:=[[Z(2)^0]]),

rec(size:=2,result:=[[Z(2)^0]])]],

number:=1)])],

[

rec(start:=2,ende:=1,dims:=[1,1],

cupspaces:=[[[Z(2)^0]],[[0*Z(2)],[Z(2)^0]]],

startnonzero:=1,v:=[(GF(2)^1),(GF(2)^1)],

s:=[VectorSpace(GF(2),[[Z(2)^0]]),VectorSpace(GF(2),

[[0*Z(2)],[Z(2)^0]])],

gens:=[

rec(name:=[1,1],products:=[

213

[rec(size:=1,result:=[[Z(2)^0]]),

rec(size:=2,result:=[[0*Z(2)]])],

[rec(size:=1,result:=[]),

rec(size:=2,result:=[[Z(2)^0,Z(2)^0]])]],

number:=1)]),

rec(start:=2,ende:=2,dims:=[1,2],

cupspaces:=[[[Z(2)^0]],[[Z(2)^0,Z(2)^0],[0*Z(2),Z(2)^0]]],

startnonzero:=1,v:=[(GF(2)^1),(GF(2)^2)],

s:=[VectorSpace(GF(2),[[Z(2)^0]]),VectorSpace(GF(2),

[[Z(2)^0,Z(2)^0],[0*Z(2),Z(2)^0]])],

gens:=[

rec(name:=[1,1],products:=[

[rec(size:=1,result:=[]),

rec(size:=2,result:=[[Z(2)^0]])],

[rec(size:=1,result:=[[Z(2)^0]]),

rec(size:=2,result:=[[0*Z(2),Z(2)^0]])]],

number:=1)])]],

grb:=[

[[[[[1,2],[1,1]],[[1,1],[1,1]]]],[Z(2)^0]],

[[[[[2,2],[1,1]],[[1,2],[1,1]]],

[[[2,2],[1,1]],[[1,2],[1,1]]]],[Z(2)^0,Z(2)^0]],

[[[[[1,1],[1,1]],[[2,1],[1,1]]]],[Z(2)^0]],

[[[[[1,2],[1,1]],[[2,1],[1,1]]],

[[[1,2],[1,1]],[[2,1],[1,1]]]],[Z(2)^0,Z(2)^0]],

[[[[[2,1],[1,1]],[[2,2],[1,1]]],

[[[2,1],[1,1]],[[2,2],[1,1]]]],[Z(2)^0,Z(2)^0]]],

homologydims:=[[[1,2],[1,1]],[[1,1],[1,2]]],

conjclassnames:=["1a","2a"])

Therefore to generate Ext up to degree 2, we have 4 generators. All of the generators

are of degree 1. Therefore the Ext-quiver should be the same as the original quiver

of the basic algebra. The generators are

[[[1,1],[1,1]],[[1,2],[1,1]],[[2,1],[1,1]],[[2,2],[1,1]]].

For example, the second generator is [[1,2],[1,1]] which means that it represents

γ ∈ Ext (S1, S2) and that it is of degree 1 and comes from the 1st standard basis

element. In general, [[i,j],[k,l]] means that it is a generator from Extk (Si, Sj)

of degree k and comes from the lth standard basis element.

214

Index

admissible order, 80

algebra, 18

basic, 46

Ext, 67

graded, 31

group algebra, 18

ideal, 19

path, 52

subalgebra, 19

Yoneda, 67

arrows, 52

Artinian module, 32

Artinian Ring, 32

basic algebra, 46

basis

multiplicative, 80

bimodule, 20

blocks, 41

Cartan matrix, 44

category, 46

equivalent, 48

central idempotent, 40

chain complex, 56

chain homotopic, 57

chain homotopy equivalent, 57

chain map, 56

cochain complex, 56

cohomology group, 61

cohomology ring, 68

composition series, 33

factors, 33

length, 33

decomposable, 24

degree

homogeneous elements, 30

in Ext, 67

degree of representation, 20

divides, 83

division algorithm, 84

elements

homogeneous, 30

equivalent categories, 48

215

equivalent representation, 21

essential, 37

exact, 23

exact sequence, 23

short, 23

split, 24

Ext-Algebra, 67

degree, 67

Ext-quiver, 75

factors of composition series, 33

Fitting’s Lemma, 36

functor, 48

Gabriel’s Theorem, 79

Gröbner basis, 83

graded algebra, 31

graded module, 31

graded vector space, 30

group

algebra, 18

group algebra, 18

head, 29

Heller Module, 59

higher overlaps, 91

homogeneous elements, 30

homology module, 56

homomorphism, 23

essential, 37

ideal, 19

idempotent, 39

central, 40

primitive, 40

orthogonal, 39

primitive, 40

indecomposable, 24

isomorphism, 23

Jacobson radical, 30

Jordan-Hölder Theorem, 34

Krull Schmidt Theorem, 34

length of composition series, 33

length-lexicographic ordering, 81

Loewy Layer, 28

Loewy series, 28

Maschke’s Theorem, 25

maximal submodule, 24

minimal projective resolution, 58

minimal tips, 88

MinSharp, 88

MinTip, 88

module, 19

Artinian, 32

bimodule, 20

decomposable, 24

216

graded, 31

Heller, 59

indecomposable, 24

Noetherian, 32

presentation, 102

projective, 26

indecomposable, 27

projective cover of a, 37

projective indecomposable, 27

regular module, 20

semisimple, 24

simple, 22

submodule, 21

trivial kG, 21

vertex simple, 54

Morita equivalent, 49

multiplicative basis, 80

natural equivalence, 48

natural transformation, 48

nil ideal, 34

nilpotent, 34

element, 34

ideal, 34

Noetherian module, 32

Noetherian ring, 32

NonTip(X), 81

normal form, 83

one-point extension, 102

order

admissible, 80

well, 80

origin vertex, 52

orthogonal, 39

path, 52

path algebra, 52

PIM, 27

presentation of a module, 102

primitive central idempotent, 40

primitive idempotent, 40

projective cover, 37

uniqueness, 38

projective indecomposable module, 27

projective module, 26

projective resolution, 57

minimal, 58

quiver, 52

E(B), 76

special with relations, 53

quiver of E(B), 76

radical, 28

series, 28

radical layer, 28

radical series, 28

217

regular module, 20

regular representation, 20

remainder, 86

representation, 20

degree, 20

equivalent, 21

regular representation, 20

trivial, 21

Schur’s Lemma, 23

semisimple module, 24

semisimple ring, 24

sharp, 88

short exact sequence, 23

simple module, 22

socle, 28

special quiver, 53

spinning algorithm, 74

split, 24

splitting field, 25

standard coset representative, 82

subalgebra, 19

submodule, 21

maximal, 24

support, 81

terminus vertex, 52

tip, 81

Tip(X), 81

trivial kG module, 21

trivial representation, 21

vertex simple module, 54

Wedderburn-Artin Theorem, 25

well-order, 80

Yoneda algebra, 67

Yoneda product, 63

218

References

[ACKM01] A. Adem, J. F. Carlson, D. B. Karagueuzian, and R. James Milgram,
The cohomology of the Sylow 2-subgroup of the Higman-Sims group,
J. Pure Appl. Algebra 164 (2001), no. 3, 275–305. MR MR1857743
(2002g:20089)

[AF92] Frank W. Anderson and Kent R. Fuller, Rings and categories of modules,
second ed., Graduate Texts in Mathematics, vol. 13, Springer-Verlag,
New York, 1992. MR 94i:16001

[AG87] David J. Anick and Edward L. Green, On the homology of quotients of
path algebras, Comm. Algebra 15 (1987), no. 1-2, 309–341. MR 876982
(88c:16033)

[AKMU98] Alejandro Adem, Dikran Karagueuzian, R. James Milgram, and Kristin
Umland, The cohomology of the Lyons group and double covers of alter-
nating groups, J. Algebra 208 (1998), no. 2, 452–479. MR MR1655462
(99m:20128)

[AM95] Alejandro Adem and R. James Milgram, The cohomology of the Math-
ieu group M22, Topology 34 (1995), no. 2, 389–410. MR MR1318884
(96c:20099)

[AM97] , The cohomology of the McLaughlin group and some associated
groups, Math. Z. 224 (1997), no. 4, 495–517. MR MR1452047 (98e:20057)

[AM04] , Cohomology of finite groups, Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences], vol.
309, Springer-Verlag, Berlin, 2004. MR 2035696 (2004k:20109)

[ARS95] Maurice Auslander, Idun Reiten, and Sverre O. Smalø, Representation
theory of Artin algebras, Cambridge Studies in Advanced Mathemat-
ics, vol. 36, Cambridge University Press, Cambridge, 1995. MR 1314422
(96c:16015)

[BC87] David J. Benson and Jon F. Carlson, Diagrammatic methods for modular
representations and cohomology, Comm. Algebra 15 (1987), no. 1-2, 53–
121. MR 876974 (87m:20032)

[Ben98a] David J. Benson, Representations and cohomology. I, Cambridge Studies
in Advanced Mathematics, vol. 30, Cambridge University Press, Cam-
bridge, 1998. MR 1644252 (99f:20001a)

219

[Ben98b] , Representations and cohomology. II, Cambridge Studies in Ad-
vanced Mathematics, vol. 31, Cambridge University Press, Cambridge,
1998. MR 1634407 (99f:20001b)

[Bro99] Peter Brown, The Ext-algebra of a representation-finite biserial algebra,
J. Algebra 221 (1999), no. 2, 611–629. MR MR1728400 (2000j:16014)

[Car83] Jon F. Carlson, The cohomology of irreducible modules over SL(2, pn),
Proc. London Math. Soc. (3) 47 (1983), no. 3, 480–492. MR 716799
(85a:20025)

[Car96] , Modules and group algebras, Lectures in Mathematics ETH
Zürich, Birkhäuser Verlag, Basel, 1996. MR 1393196 (97c:20013)

[Car01] , Calculating group cohomology: tests for completion, J. Symbolic
Comput. 31 (2001), no. 1-2, 229–242. MR 1806218 (2002c:20083)

[CCN+85] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson,
Atlas of finite groups, Oxford University Press, Eynsham, 1985, Maxi-
mal subgroups and ordinary characters for simple groups, With compu-
tational assistance from J. G. Thackray. MR MR827219 (88g:20025)

[CGS97] Jon F. Carlson, Edward L. Green, and Gerhard J. A. Schnieder, Com-
puting Ext algebras for finite groups, J. Symbolic Comput. 24 (1997),
no. 3-4, 317–325. MR 1484482 (98k:20086)

[CLO97] David Cox, John Little, and Donal O’Shea, Ideals, varieties, and al-
gorithms, Undergraduate Texts in Mathematics, Springer-Verlag, New
York, 1997. MR 1417938 (97h:13024)

[CMM99] Jon F. Carlson, John S. Maginnis, and R. James Milgram, The coho-
mology of the sporadic groups J2 and J3, J. Algebra 214 (1999), no. 1,
143–173. MR 1684888 (2000a:20116)

[CR90] Charles W. Curtis and Irving Reiner, Methods of representation theory.
Vol. I, Wiley Classics Library, John Wiley & Sons Inc., New York, 1990.
MR 1038525 (90k:20001)

[CTVEZ03] Jon F. Carlson, Lisa Townsley, Luis Valeri-Elizondo, and Mucheng
Zhang, Cohomology rings of finite groups, Algebras and Applications,
vol. 3, Kluwer Academic Publishers, Dordrecht, 2003. MR 2028960
(2004k:20110)

[DF91] David S. Dummit and Richard M. Foote, Abstract algebra, Prentice Hall
Inc., Englewood Cliffs, NJ, 1991. MR 1138725 (92k:00007)

220

[Eve61] Leonard Evens, The cohomology ring of a finite group, Trans. Amer.
Math. Soc. 101 (1961), 224–239. MR 0137742 (25 #1191)

[FFG93] Daniel R. Farkas, C. D. Feustel, and Edward L. Green, Synergy in the
theories of Gröbner bases and path algebras, Canad. J. Math. 45 (1993),
no. 4, 727–739. MR 1227656 (94d:13030)

[FG91] C.D. Feustel and Edward L. Green, GROEBNER VERSION. 1.0, 1991,
Availabe via Anonymous FTP, contact GREEN@MATH.VT.EDU.

[FGKK93] Charles D. Feustel, Edward L. Green, Ellen Kirkman, and James
Kuzmanovich, Constructing projective resolutions, Comm. Algebra 21
(1993), no. 6, 1869–1887. MR 1215551 (94b:16022)

[FP78] Zbigniew Fiedorowicz and Stewart Priddy, Homology of classical groups
over finite fields and their associated infinite loop spaces, Lecture
Notes in Mathematics, vol. 674, Springer, Berlin, 1978. MR MR513424
(80g:55018)

[Frö97] Ralf Fröberg, An introduction to Gröbner bases, Pure and Applied Math-
ematics (New York), John Wiley & Sons Ltd., Chichester, 1997. MR
1483316 (99d:13032)

[GAP05] The GAP Group, GAP – Groups, Algorithms, and Programming, Ver-
sion 4.4, 2005, (http://www.gap-system.org).

[Gen01] A. I. Generalov, Cohomology of algebras of semidihedral type. I, Algebra
i Analiz 13 (2001), no. 4, 54–85. MR 1865495 (2002h:16020)

[Gen02] , Cohomology of algebras of dihedral type. IV. The D(2B) series,
Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 289
(2002), no. Vopr. Teor. Predst. Algebr. i Grupp. 9, 76–89, 301. MR
1949735 (2003k:16016)

[GK03] A. I. Generalov and N. V. Kosmatov, Computation of the Yoneda alge-
bras for algebras of dihedral type, Zap. Nauchn. Sem. S.-Peterburg. Otdel.
Mat. Inst. Steklov. (POMI) 305 (2003), no. Vopr. Teor. Predst. Algebr.
i Grupp. 10, 101–120, 239. MR 2033616 (2004j:16010)

[GK04] , Projective resolutions and Yoneda algebras for algebras of di-
hedral type: the series D(3Q), Fundam. Prikl. Mat. 10 (2004), no. 4,
65–89. MR 2142509

221

[GO02] A. I. Generalov and E. A. Osiyuk, Cohomology of algebras of dihedral
type. III. The D(2A) series, Zap. Nauchn. Sem. S.-Peterburg. Otdel.
Mat. Inst. Steklov. (POMI) 289 (2002), no. Vopr. Teor. Predst. Algebr.
i Grupp. 9, 113–133, 301–302. MR 1949737 (2003k:16015)

[Gre74] J. A. Green, Walking around the Brauer Tree, J. Austral. Math. Soc.
17 (1974), 197–213, Collection of articles dedicated to the memory of
Hanna Neumann, VI. MR MR0349830 (50 #2323)

[Gre94] Edward L. Green, An introduction to noncommutative Gröbner bases,
Computational algebra (Fairfax, VA, 1993), Lecture Notes in Pure and
Appl. Math., vol. 151, Dekker, New York, 1994, pp. 167–190. MR
1245952 (94j:16040)

[Gre97] David J. Green, Constructing projective resolutions for p-groups, Vor-
lesungen aus dem Fachbereich Mathematik der Universität GH Essen
[Lecture Notes in Mathematics at the University of Essen], vol. 24,
Universität Essen Fachbereich Mathematik, Essen, 1997. MR 1468730
(98h:20095)

[Gre99] Edward L. Green, Noncommutative Gröbner bases, and projective resolu-
tions, Computational methods for representations of groups and algebras
(Essen, 1997), Progr. Math., vol. 173, Birkhäuser, Basel, 1999, pp. 29–60.
MR 1714602 (2001f:16030)

[Gro04] Larry C. Grove, Algebra, Dover Publications Inc., Mineola, NY, 2004.
MR 2107088 (2005g:00002)

[GSZ01] Edward L. Green, Ø. Solberg, and D. Zacharia, Minimal projective res-
olutions, Trans. Amer. Math. Soc. 353 (2001), no. 7, 2915–2939 (elec-
tronic). MR 1828479 (2002c:16010)

[Hof04] Thomas R. Hoffman, Constructing basic algebras for the principal block
of sporadic simple groups, Ph.D. thesis, University of Arizona, 2004.

[HS97] P. J. Hilton and U. Stammbach, A course in homological algebra, Gradu-
ate Texts in Mathematics, vol. 4, Springer-Verlag, New York, 1997. MR
1438546 (97k:18001)

[MAG04] The Magma Group, The Magma Computational Algebra System, 2004,
(http://magma.maths.usyd.edu.au).

[McC88] Randy McCarthy, Morita equivalence and cyclic homology, C. R. Acad.
Sci. Paris Sér. I Math. 307 (1988), no. 6, 211–215. MR MR956808
(89k:18028)

222

[Mil00] R. James Milgram, The cohomology of the Mathieu group M23, J. Group
Theory 3 (2000), no. 1, 7–26. MR MR1736514 (2000k:20068)

[Smi44] P. A. Smith, Permutable periodic transformations, Proc. Nat. Acad. Sci.
U. S. A. 30 (1944), 105–108. MR MR0010278 (5,274d)

[Wei94] Charles A. Weibel, An introduction to homological algebra, Cambridge
Studies in Advanced Mathematics, vol. 38, Cambridge University Press,
Cambridge, 1994. MR 1269324 (95f:18001)

