7B. For the curve \(y = 2 \, x^{3/2} \), find the exact length of the arc between \(x = 0 \) and \(x = 1 \).

SOLUTION. The formula for arclength of a curve with equation \(y = f(x) \) between \(x = a \) and \(x = b \) is

\[
L = \int_a^b \left[1 + f'(x)^2 \right]^{1/2} \, dx.
\]

In this case, \(f(x) = 2 \, x^{3/2} \), so \(f'(x) = 3x^{1/2} \); \(a = 0 \) and \(b = 1 \). Thus,

\[
L = \int_0^1 \left[1 + 9x \right]^{1/2} \, dx = \left(\frac{1}{9} \right) \left(\frac{2}{3} \right) [1 + 9x]^{3/2} \bigg|_0^1 = \left(\frac{2}{27} \right) [10^{3/2} - 1]
\]