Math 323 Algebra and Functions 21st century

Algebra.

1. **Prove** (correctly, completely, clearly, carefully, and concisely) that for every real number \(y \) in the interval \([3, 19]\), there is a real number \(x \) in the interval \([-4, 2]\) such that \(y = x^2 + 3 \).
 (Of course, you should use only algebra in the proof. And, of course, relying on a graph for your proof, or making unproved assertions about maxima and minima, is unacceptable; a graph can be useful to help you decide how to do the proof, but it is not part of the proof.
 Keep these remarks in mind throughout the rest of the course.)

Functions. (As always, check the specific Lesson online for detailed instructions.)

2. Determine the range of the function \(f: \mathbb{R} \to \mathbb{R} \) given by \(f(x) = (x + 3)^2 - 4 \). Illustrate with a graph.
 Proof MIGHT not necessary for this assignment, but you should be able to prove your answer.

3. Determine the range of the function \(f: \mathbb{R} \to \mathbb{R} \) given by \(f(x) = x^2 + 6x + 5 \). Illustrate with a graph.
 Proof MIGHT not necessary for this assignment, but you should be able to prove your answer.

4. Determine the range of the function \(f: [-4, 2] \to \mathbb{R} \) given by \(f(x) = x^2 + 3 \). Illustrate with a graph.
 Proof MIGHT not necessary for this assignment, but you should be able to prove your answer.

5. Suppose \(f: X \to Y \), with domain \(X \). Prove:
 If there exists a function \(g: Y \to X \), with domain \(Y \), such that for all \(x \) in \(X \), \(g(f(x)) = x \),
 then \(f \) is injective*. (The function \(g \) is called a “left inverse” of \(f \). More precisely, note that the domain of \(g \) is given to be the codomain of \(f \), and the codomain of \(g \) is chosen to be the domain of \(f \).)

6. **REFER to the function \(f \) defined in Problem 11.7 in Section 11.5 in the textbook, given by \(f(x) = x^2 - 6x + 3 \) for all \(x \) in the interval \([3, \infty)\).**

 (prelude) The book claims that this defines a function from \([3, \infty)\) to \([-6, \infty)\). **Verify** this claim.
 [Since \(f(x) \) is clearly defined for all \(x \) in \([3, \infty)\), this is clearly an acceptable domain. Worry about the codomain.]
 (a) **Do part (a)** in Problem 11.7 and prove your answer.
 (b) **Do part (b)** in Problem 11.7.*

*Comment on “injective”.

For a function, “injective” means the same as “one-to-one” – different inputs have different outputs.
I.e., for a function \(f: \) For all \(x \) and \(y \) in the domain of \(f \), if \(x \neq y \), then \(f(x) \neq f(y) \).
To prove that a function is injective, it is usually much more convenient to prove the contrapositive,

\[
\text{for all } x \text{ and } y \text{ in the domain of } f, \text{ if } f(x) = f(y), \text{ then } x = y.
\]

This is the “standard” way of proving that a function is injective, but of course that does not mean you “have to” do it this way if there is an easier way to do it; in particular, if you can UPR, do so. (It’s the idea of “correct, complete, clear, careful, and concise” again.)