For emphasis (this is a general guideline; it will not be repeated in every Lesson): **Be efficient in your proofs** (e.g., don't repeat work that you've already done; **use previous results** where appropriate).

1. Prove the following facts (a) to (f) (see definitions above)

 For practice, **you should not use the fact that an integer is odd iff it is not even:**

 a. If \(n \) is an even integer and \(m \) is an integer, then \(nm \) is even.

 COMMENT. This will be discussed in class. Note the instruction above (RTI): So do not use the fact that …

 b. If \(n \) is an even integer and \(m \) is an integer, then \(mn \) is even.

 PROOF. Suppose \(n \) is an even integer and \(m \) is an integer. Then, by (a), \(nm \) is even.

 By commutativity, \(mn = nm \). So, \(mn \) is even.

 OR, a very slightly different approach:

 Suppose \(n \) is an even integer and \(m \) is an integer. Consider \(mn \).

 By commutativity, \(mn = nm \). By (a), \(nm \) is even. So, \(mn \) is even.

 c. If \(m \) is an even integer and \(n \) is an integer, then \(mn \) is even.

 (As noted above, keep the proof as simple as possible.)

 PROOF. This is exactly the same statement as (a) above (with the variables \(m \) and \(n \) interchanged). Since (a) is true, this is true.

 [**COMMENT:** Commutativity is irrelevant here. You have already proved, in (a), exactly this statement.]

 May be continued with (d) (e) (f).