8. This problem is about the Division Algorithm. This theorem has an “existence” part and a “uniqueness” part. For the purposes of this problem, you can focus on existence and ignore uniqueness. The first problem below asks you to state the Division Algorithm for a certain case. Then the second problem asks you to USE this result just stated to prove the Division Algorithm for another case.

(a) Suppose \(n \) and \(d \) natural numbers. What does the Division Algorithm tell you about the existence of a ”quotient” and a “remainder”? [“There exist ... ”] State the relevant equalities and inequalities.

(b) Suppose \(n \) is a negative integer and \(d \) is a natural number. Suppose \(d \) does NOT divide \(n \). State and prove the Division Algorithm (the existence part of the Division Algorithm) for this case, using the fact just stated in (a) (the Division Algorithm for natural numbers).

SOLUTIONS (ignoring uniqueness):

(a) There exist integers \(q \) (quotient) and \(r \) (remainder) such that \(n = qd + r \) and \(0 \leq r < d \).

(b) There exist integers \(q \) and \(r \) such that \(n = qd + r \) and \(0 < r < d \). \((r > 0 \text{ because } d \text{ does not divide } n.)\)

Proof. Assume \(n \) is a negative integer and \(d \) is a natural number. Then \(-n \) is a natural number, so by (a), there exist integers \(q' \) and \(r' \) such that \(-n = q'd + r', \) where \(0 < r' < d \) \((r' > 0 \text{ since } d \text{ does not divide } n \text{ and therefore does not divide } -n).\)

So, \(n = -q'd - r' = (-q' - 1)d + d - r' = qd + r, \) for \(q = -q' - 1 \) and \(0 < r = d - r' < d \).

This proves the statement in (b) \([\text{with } q = -q' - 1 \text{ and } r = d - r'].\)