3. (Included for reference, for use in Problem 4 below.)
 We will say, for this exam, that a number is **flat** iff it is an integer which is a multiple of 5.
 Prove the following using the definition of “is a multiple of” (all variables refer to integers):

 (a) 0 is flat. (I.e., \(5 \mid 0\).)
 (b) \(n\) is flat iff \(-n\) is flat.
 (c) If \(a\) is flat and \(b\) is flat, then \(a + b\) is flat.

4. Equivalence Relations. (Slightly different notation than used on exam.)
 Define a relation \(\sim\) on \(\mathbb{R}\) by
 \[x \sim y \text{ iff } x \text{ and } y \text{ are real and } x - y \text{ is an integer which is flat } (i.e., 5 \mid (x - y)). \]
 Prove that this is an equivalence relation on \(\mathbb{R}\) (of course, use the definition of the relation to do this).

 Proof. Use Problem 3:
 Reflexive: Suppose \(x\) is a real number. Then \(x - x = 0\), which is flat by 3(a).
 Thus \(x \sim x\). So the relation is reflexive.

 Symmetric: Suppose \(x \sim y\). Then, by definition of the relation, \(x - y\) is flat.
 Now, \(y - x = -(x - y)\), so by 3(b), \(y - x\) is flat.
 So \(y \sim x\). Thus, the relation is symmetric.

 Transitive. Suppose \(x \sim y\) and \(y \sim z\). Then, by definition of the relation, \(x - y\) and \(y - z\) are flat.
 Now, \(x - z = (x - y) + (y - z)\), so by 3(c), \(x - z\) is flat.
 So \(x \sim z\). Thus, the relation is transitive.

5. Equivalence Classes.
 For the relation defined in the preceding problem, think about the equivalence class of \(\pi\)
 (denoted by \([\pi]\)). If nonempty, **give the three smallest positive elements** of this equivalence class.
 (Explain your answer if you say “empty”;
 if nonempty, explain why the elements you give are in \([\pi]\), but you don’t have to explain why positive and smallest.)

 SOLUTION. Three smallest positive elements of \([\pi]\) are \(\pi\), \(\pi + 5\), \(\pi + 10\).
 Each of these is in \([\pi]\) because each is equivalent to \(\pi\), because the difference between \(\pi\) and each of
 these three numbers is a multiple of 5.

 COMMENT. We have a relation on the real numbers. Since \(\pi\) is a real number, there is an equivalence
 class \([\pi]\) which consists of all real numbers \(x\) with \(x \sim \pi\); three of these are given above.

6. Discussed elsewhere.

7. Division Algorithm.
 Suppose \(n\) is an integer. Consider 5 as a divisor (the number we have denoted by \(d\) when
 discussing the Division Algorithm). **Write down** what the Division Algorithm says about \(n\) with
divisor 5. (“There exist”) Don’t forget “uniqueness”.
 (What is the Division Algorithm for “\(n\) divided by 5” ?)

 SOLUTION. There exist integers \(q\) and \(r\) such that \(n = q(5) + r\) and \(0 \leq r < 5\).
 For any given \(d\), there is only one such pair \((q, r)\).
8. (a) List the elements of the set \(\{ r \in \mathbb{Z} : 0 \leq r < 5 \} \) as shown below:

\[
SOLUTION. \quad \{ r \in \mathbb{Z} : 0 \leq r < 5 \} = \{ 0, 1, 2, 3, 4 \}.
\]

(b) Decide whether \([0, 5) = \{ r \in \mathbb{Z} : 0 \leq r < 5 \}\).

\[
\text{If true, just write the equality on your paper and say “true”.}
\]

\[
\text{If false, prove false.}
\]

\[
SOLUTION. \quad \text{False. Consider } x = 4.5. \text{ Then } x \text{ is in the interval } [0, 5), \text{ but } x \text{ is not in } \{ 0, 1, 2, 3, 4 \}
\]

9. Suppose \(m \) and \(b \) are real numbers.

(a) Consider the set \(\{ (x, y) \in \mathbb{R} \times \mathbb{R} : \text{for all real } u \text{ and } v, \quad v = mu + b \} \).

What is this set? Give a simple description and prove or at least explain clearly.

\[
SOLUTION. \quad \text{The statement after the colon (:)} \text{ in the set-builder description of the set is a false statement. Thus, the set is empty.}
\]

(b) Discuss \(\{ (x, y) \in \mathbb{R} \times \mathbb{R} : \text{for all real } x \text{ and } y, \quad y = mx + b \} \).

\[
SOLUTION. \quad \text{First interpretation: Bad notation, since the } x \text{ and } y \text{ after the colon are being used in a different way (dummy variables) than the } x \text{ and } y \text{ before the colon.}
\]

\[
\text{Second interpretation: If we assume that the } x \text{ and } y \text{ after the colon are intended to be different variables than those before the colon, then this is the same as the set in (a).}
\]