Functions.

2. Assume \(g : (-\infty, 2) \to \mathbb{R} \) is given by

\[
\text{For each } t \text{ in } (-\infty, 2), \quad g(t) = |t| + 2.
\]

Find the range of \(g \) and prove your answer, following the guidelines given in this class for proving such statements (e.g., use only simple algebra).

SOLUTION. The range of \(g \) is \([2, \infty)\).

Proof. Suppose \(y \) is in \(\text{ran}(g) \). Then there exists \(t \) in \(\text{dom}(g) \) such that

\[
y = g(t) = |t| + 2 \geq 2,
\]

so \(y \) is in \([2, \infty)\).

Conversely, suppose \(y \) is in \([2, \infty)\), so \(y \geq 2 \) (NOT \(2 \leq y < \infty \)! See Project I.)

Choose \(t = 2 - y \); this is negative since \(y \geq 2 \). So, \(t \) is in \(\text{dom}(g) = (-\infty, 2) \), and

\[
g(t) = |t| + 2 = -(2 - y) + 2 = y,
\]

so \(y \) is in \(\text{ran}(g) \).

This proves that \(\text{ran}(g) = [2, \infty) \).

3. Find a new codomain \(B \) for the function \(g \) given in the preceding problem (Problem 2) so that \(g : (-\infty, 2) \to B \) is surjective and explain your answer.

SOLUTION. Choose the codomain \(B \) to be the range, \([2, \infty)\). Since the codomain is the range, the function \(g : (-\infty, 2) \to B \) is surjective.

Order.

5. Let \(S \) be a set of real numbers; suppose \(S \) has a maximum \(m \).

(You should know what a “maximum” is.).

Prove that \(m \) is the supremum of the set \(S \) in TWO different ways:

a. Using the “least upper bound” definition of supremum.

b. Using the “approximation property” of supremum.

You don’t need the Completeness Axiom.

SOLUTION.

a. Assume \(S \) has a maximum \(m \). To prove that \(m = \sup(S) \): By definition of maximum, \(m \) is an upper bound of \(S \) and \(m \) is an element of \(S \). So, as just stated, \(m \) is an upper bound of \(S \).

Suppose \(b \) is an upper bound of \(S \). Since \(m \) is an element of \(S \), \(b \geq m \). So, \(m \) is the least upper bound of \(S \).

b. As above, \(m \) is an upper bound of \(S \) and \(m \) is an element of \(S \). To use the approximation property, suppose \(x < m \). Then, trivially, \(m \) is an element of \(S \) and \(m > x \). So, by the approximation property for suprema, \(m - \sup(S) \).