7. Let F be a function defined as follows: For each real number x, $F(x)$ is the interval (x, ∞).

(a) Let \mathbb{R} be the set of all real numbers. Decide whether the power set of \mathbb{R} (i.e., the set of all subsets of \mathbb{R}) is an appropriate codomain for F, and explain.

SOLUTION. Each output of the function F is an interval, and therefore a subset of \mathbb{R}. Thus, the set of all subsets of \mathbb{R} is an appropriate codomain.

(b) Decide if this function, with this codomain, is surjective, and explain your answer clearly.

SOLUTION. Generally, there are subsets of \mathbb{R} which are not intervals, and therefore cannot be outputs of this function.

Specifically, choose any ONE of the following subsets of \mathbb{R}: \emptyset, $\{7\}$, \mathbb{R} (for example). None of these is an output of the function. So the power set of \mathbb{R} is not the range, and so F is not surjective.

(c) Decide if this function is injective, and explain your answer clearly.

SOLUTION. Suppose a and b are real numbers and $F(a) = F(b)$.

Then, by definition of F, $(a, \infty) = (b, \infty)$. Thus $a = b$. (This can be accepted. But a proof, using trichotomy (implicitly) is not hard.) So F is injective, by definition of injective.