1. Consider the following “Theorem”. Suppose you believe that the “Theorem” is true. How Do You Start the Proof of the “if-then” statement in the “Theorem”? I.e., what is the standard way of starting the proof? I.e., what is the first “step” of the proof? (Of course, be specific.) “Theorem”. If R is an abusive relation on a set A and S is a relation on A which dominates R, then blah blah blah.

SOLUTION. [The approach to proving such a statement was reviewed in Lesson HW12, following Problem 1 there. Be sure you know an understand this.]

Proof.
Assume that R is an abusive relation on a set A and S is a relation on A which dominates R. ...

[That is how you start the proof: Assume the antecedent, as stated in HW 12 and many times in class.]

2. Suppose you are given a relation Z on a set A. Suppose you believe that Z is reflexive on A. How Do You Start the Proof of the statement “Z is reflexive on A”? I.e., what is the standard way of starting the proof? I.e., what is the first “step” of the proof that Z is reflexive on A? (Of course, be specific.)

SOLUTION. [The definition of reflexive for this situation can be written
If x is an element of A, then $x Z x$. The approach to proving such a statement was reviewed in Lesson HW12, following Problem 1 there. Be sure you know an understand this.]

Proof.
Assume that x is an element of A. ...

[That is how you start the proof: Assume the antecedent, as stated in HW 12 and many times in class.]

3. Consider the following “Theorem”. Suppose you believe that the “Theorem” is true. What would be the standard first two “steps” of the proof? (Of course, be specific.) “Theorem”. If R is an abusive relation on a set A and S is a relation on A which dominates R, then S is reflexive on A.

SOLUTION. [The approach to proving such a statement was reviewed in Lesson HW12, following Problem 1 there. Be sure you know an understand this.]

Proof.
Assume that R is an abusive relation on a set A and S is a relation on A which dominates R. Assume that x is an element of A. ...

[For this problem, just copy and paste the answers to Problems 1 and 2 above. This is what was reviewed in Lesson HW12, following Problem 1 there.]