Archimedean property.

The set of natural numbers is unbounded above.

Another example of a proof by contradiction.

First, recall the approximation property:

Suppose \(m \) is an upper bound of a set \(S \).
Then \(m = \sup(S) \) iff

- for all \(x < m \), there exists \(s \) in \(S \) such that \(s > x \).

[BWOC] Suppose \(\mathbb{N} \) is bounded above.

Then \(\mathbb{N} \) has a supremum, say \(m \).
We will get a contradiction.
Think about \(m - 1 \).
As we all know, \(m - 1 < m \).
Apply approximation property:

- There exists \(n \) in \(\mathbb{N} \) such that \(n > m - 1 \).

So \(n + 1 > m = \sup(\mathbb{N}) \). Of course, since \(n \in \mathbb{N} \), then \(n + 1 \in \mathbb{N} \),

Contradiction!

Thus, \(\mathbb{N} \) is not bounded above.

\(\mathbb{N} \) is bounded above means

- There exists \(b \) in \(\mathbb{R} \) such that for all \(n \) in \(\mathbb{N} \), \(n \leq b \).

\[\exists b \text{ in } \mathbb{R} \text{ s.t. } \forall n \text{ in } \mathbb{N}, \; n \leq b. \]

This is not true, so

\[\forall x \text{ in } \mathbb{R}, \; \exists n \text{ in } \mathbb{N} \text{ s.t. } n > x. \]

For all \(x \) in \(\mathbb{R} \), there exists \(n \) in \(\mathbb{N} \) such that \(n > x \).
Archimedian Property:

For every real number \(x \), there exists a natural number \(n \) such that \(n > x \).

One consequence.

Suppose \(x \) is a real number. Then there exists a smallest integer which is \(\geq x \). This number is sometimes called the ceiling of \(x \) and denoted by \(\lceil x \rceil \).

For simplicity, we real prove this only for positive numbers \(x \) (so that the ceiling is a natural number).

Proof. First, we show there is a natural number \(\geq x \). Then, we show there is a smallest one (least, minimum).

Why is there a natural number \(\geq x \)?

So, consider the set \(\{ n \in \mathbb{N} : n \geq x \} \).

Why does this set have a least element?

So, for every positive number \(x \), there is a smallest natural number \(n \geq x \).

Examples: \(\lceil \pi \rceil = ? \quad \lceil 7 \rceil = ? \)
Variation:
For every number $x \geq 0$, there is a smallest natural number $n > x$.
Use the same proof, or UPR.

Simple generalizations and variations: Can replace “positive” by “real” and “natural number” by “integer”.

Can also do it on the left:
Suppose x is a real number. Then there exists a largest integer which is $\leq x$. This number is sometimes called the floor of x and denoted by $\lfloor x \rfloor$. For example, $\lfloor \pi \rfloor = ?$, $\lfloor 7 \rfloor = ?$

We will specifically make use of the following:
For every $x \geq 0$, there exists a smallest natural number $n > x$.

We use this to prove
The density of the rationals:
Between any two distinct real numbers, there is a rational number.
More precisely, for any two distinct real numbers, there is a rational number strictly between them.

If you prefer algebra to words:
If a and b are real numbers with $a < b$, then there is a rational number r with $a < r < b$.

As usual with universally quantified statements like this, it is one of the extreme sides of the statement which is important. In this case, if a and b are far apart, finding a rational number between them is not a big deal (in fact, we can find an integer between them).

Between any two real numbers, NO MATTER HOW CLOSE THEY ARE, there is a rational number.