Often in mathematics you have two sets, say A and B, and you want to prove that the sets are equal.

A typical situation (but not the only situation) is when one of the sets, say A, is defined “abstractly”, in a general way, such as
- the range of a function;
- the null space of a linear transformation;
- an equivalence class of an equivalence relation (if you know what that is);
and the set B is some specific set, such as a specific interval, or a specific set of vectors, or the set of all even numbers ...

Here is the general way to prove that two sets are equal:
you want to prove that x is in A iff x is in B.

I.e.,
$$\forall x \in A, \ x \in B, \ \text{and} \ \forall x \in B, \ x \in A \ (A \subseteq B \ \text{and} \ B \subseteq A).$$

Usually better to do the “element-chasing” approach rather than the “subset” approach.

As usual, these can be stated as if-then statements:
If $x \in A$, then $x \in B$ and if $x \in B$, then $x \in A$.

So a proof usually has two “directions”: “going from A to B”, and “going from B to A”.

Common error: Doing only one direction. It will happen at least once this semester.

Sometimes it is more convenient to prove the contrapositive of at least one of these; e.g., prove
If $x \in A$, then $x \in B$ and if $x \notin A$, then $x \notin B$.
As often happens, there are special considerations when one of the sets is given to be empty, e.g., when you have a set S and you want to prove that $S = \emptyset$.

As we pointed out in last class, the statement

\[
\text{if } x \in \emptyset, \text{ then } x \in S
\]

is always true, for every set S, since “$x \in \emptyset$” is always false. Last time pointed out that this is equivalent to saying,

\[
\text{for every set } S, \emptyset \subseteq S
\]

(PLEASE don’t re-prove this everytime you use this fact; it’s true; if you need it, use it.)

In terms of proving, for a given set S, that $S = \emptyset$, we don’t have to “go both ways” as we usually do, because we know that one direction is always true.

So, roughly speaking, the idea is to start with an element, say s, of S, and prove that $s \in \emptyset$.

But even this is weird.
Here is the way to think about proving:

Given a set S, you want to prove.
We do a proof by contradiction.
Suppose S is not empty, and consider $s \in S$.
Get a contradiction. Then $S = \emptyset$.

Summary: To prove that $S = \emptyset$, suppose s is an element of S, and show that this leads to a contradiction.
Thus there is nothing in S, and $S = \emptyset$.

2