We will say that a set \(S \) is a **reflective set** iff \(S \) is a nonempty set of real numbers (i.e., a nonempty subset of \(\mathbb{R} \)) and for all \(x \) in \(S \), \(-x\) is in \(S \).

[Note that the word is **reflective**, which is not the same as **reflexive**. The word **reflective** is invented just for this problem.]

a. Suppose you want to prove that a nonempty subset \(S \) of the real numbers is reflective, using the definition of reflective.

What is the standard way of starting the proof that it is reflective, using the definition of reflective?

SOLUTION. The definition of “\(S \) is reflective” can be written either as

\[
\text{\(S \) is a nonempty set of real numbers and for all \(x \) in \(S \), \(-x\) is in \(S \).}
\]

or

\[
\text{\(S \) is a nonempty set of real numbers and if \(x \) in \(S \), then \(-x\) is in \(S \).}
\]

Since it is assumed that the given set \(S \) is a nonempty set of real numbers, we would start the proof that it is reflective in the usual way: **Assume \(x \) is in \(S \).**

b. True or false; prove your answer:

If \(R \) and \(S \) are nonempty sets of real numbers, \(R \) is reflective, and \(R \subseteq S \), then \(S \) is reflective.

SOLUTION. FALSE. Counterexample.

Let \(R = \{0\} \). Then \(R \) is a nonempty set of real numbers, and \(R \) is reflective.

\[
\text{Proof that \(R \) is reflective. Suppose \(x \in R \). Then, by definition of \(R \), \(x = 0 \).
\]

so \(-x = 0 \in R\), and thus \(R \) is reflective.

Let \(S = \{0, \pi\} \). Clearly, \(S \) is a nonempty set of real numbers, and \(R \subseteq S \). But \(S \) is not reflective.

\[
\text{Proof that \(S \) is not reflective. Consider \(x = \pi \). Then \(-\pi \in S \). So \(S \) is not reflective.}
\]

by counterexample.

We have found \(R \) and \(S \) such that

\[
\text{\(R \) and \(S \) are nonempty sets of real numbers, \(R \) is reflective, and \(R \subseteq S \).
}\]

But \(S \) is not reflective.

This proves that the statement in (b) is false.

COMMENT. If you believe that the statement given in (b) is true, a proof should start (of course) in the usual way for proving such statement.

First, assume \(R \) and \(S \) are nonempty sets of real numbers, \(R \) is reflective, and \(R \subseteq S \).

Then, to prove \(S \) is reflective, again, start in the usual way, using the definition of reflective:

Assume \(x \in S \).

If you want to prove that \(S \) is reflective, you start the proof with an arbitrary element of \(S \), just as you should have said in part (a) of this problem. DON’T start with an element of \(R \), even though this is a certain kind of element of \(S \). Start with an ARBITRARY element of \(S \).

That’s the point of all the talk about HDYSP.

Now, having started with an arbitrary element of \(S \), **try to prove \(-x \in S \). Can’t.**

So, find counterexample..
There were two homework problems similar to Problem 2.

Briefly, the similar homework problems were:

If \(R \) is a reflexive relation on a set \(A \) and \(S \) is a relation on \(A \) and \(R \subseteq S \), then \(S \) is reflexive on \(A \).

If \(R \) and \(S \) are relations and \(R \) is symmetric and \(R \subseteq S \), then \(S \) is symmetric.

The “reflective” problem on the exam is most similar to the “symmetric” problem for relations:

The definition of “\(S \) is symmetric” looks like:

For every \((a, b) \) in \(S \), ... something happens

(Completely: For every \((a, b) \) in \(S \), \((b, a) \) is in \(S \).)

The definition of “\(S \) is reflective” looks like:

For every \(x \) in \(S \), ... something happens

(Completely: For every \(x \) in \(S \), \(-x \) in \(S \).)

To prove that a relation \(S \) is symmetric using the definition, one STARTS with an ordered pair \((a, b) \) in \(S \) (not with an ordered pair \((a, b) \) from somewhere else) ...

one starts with an ordered pair \((a, b) \) in \(S \) and then shows \((b, a) \) is in \(S \),

not start with \((a, b) \) from somewhere and then show \((a, b) \) and \((b, a) \) are in \(S \).)

To prove that a set \(S \) is reflective using the definition, one STARTS with an element \(x \) of \(S \) (not with an element \(x \) from somewhere else) ...

one starts with an element \(x \) in \(S \) and then shows \(-x \) is in \(S \),

not with an element \(x \) from somewhere else and then show \(x \) and \(-x \) are in \(S \).