All the problems on this exam are in the “world of real numbers”. Unless otherwise indicated, SETS (such as S and T) ARE ASSUMED TO BE SETS OF REAL NUMBERS, and lower-case “variables” such as x and b are assumed to be real numbers.

5. Suppose a set S has the following property:

For every natural number n, there exists s in S such that $s > n$.

Prove, using tools from this class and definitions given here (e.g., Problem 3), that S is unbounded above.

SOLUTION. Proof. Suppose S is a set with the property given.
Consider a real number b. By the Archimedean property, there is a natural number $n > b$.
By our assumption on S, there exists s in S such that $s > n > b$.
Thus, for every real number b, there exists an element s in S with $s > b$, and therefore by Problem 3 above, S is unbounded above.