6. For the purposes of this exam, we give the following definition:
 Given a real number \(b \), we say that a set \(S \) of real numbers is \(b \)-bounded iff for all \(x \) in \(S \), \(x \leq b \).

Let \(b \) be a real number.
Prove or disprove, carefully and completely:
A set \(S \) of real numbers is \(b \)-bounded iff \(S = (-\infty, b] \).

SOLUTION. This statement is false. One can give a “general” counterexample, i.e., show that for every real number \(b \), the given statement if false, or, one can give a specific counterexample, showing that there exists a \(b \) such that the given statement is false.
We will give a general proof.

Let \(b \) be a real number.
Consider the set \(S = \{b\} \).
Consider \(x \) in \(S \). Then \(x = b \), so \(x \leq b \). So, by definition, \(S \) is \(b \)-bounded.
But clearly \(S \neq (-\infty, b] \). (E.g., \(b - 1 \) is an element of \((-\infty, b] \), but not an element of \(\{b\} \).)

A specific counterexample had be obtained by doing the same thing for your specific favorite real number \(b \).