Example from HW 18.

Let $D = \{4, 5, 6\}$.

What is $\text{UB}(D)$?

Claim: $\text{UB}(D) = [6, \infty)$ [use this notation instead of $\{x : x \geq 6\}$, and no need to give another name to this set, unless it is really easier to write].

Proof.

Suppose b is an element of $[6, \infty)$. Then $6 \leq b$.

[To prove: b is an element of $\text{UB}(D)$; i.e., to prove b is an upper bound of D; i.e., to prove for all x in D, $b \geq x$.]

Suppose x is an element of D. Then x is 4 or 5 or 6. Each of these is ≤ 6, so $x \leq 6 \leq b$.

Thus, by definition of upper bound, b is an upper bound of D, so b is an element of $\text{UB}(D)$.

Conversely, suppose b is an element of $\text{UB}(D)$.

Then, by definition of UB, for all x in D, $b \geq x$.

[To prove: b is an element of $[6, \infty)$.]

Since 6 is an element of D, $b \geq 6$.

Thus, b is an element of $[6, \infty)$.

[Note how we use the universally quantified statement]

[Note that we couldn't do this if 6 were not in the set; proof would be more complicated if 6 was not in the set D, and might want to use contrapositive: if $b < 6$, then b is not an element of $\text{UB}(D)$.]

Thus, b is an element of $\text{UB}(D)$ iff b is an element of $[6, \infty)$.

So, $\text{UB}(D) = [6, \infty)$.