This is a summary of the proof which was done in class on Wednesday, October 12.

Suppose \(f \) is a monotone function whose domain, \(D \), and range are both intervals, as described in Theorem 3.23 in the textbook. Here is part of the proof that \(f \) is continuous on \(D \) in the case \(f \) is increasing on \(D \).

Proof. Consider an element \(a \) of \(D \) and \(\varepsilon > 0 \). Using the \(\varepsilon-\delta \) definition of continuity, we want to find \(\delta \) such that

for all \(x \) in \(D \), if \(a - \delta < x < a + \delta \), then \(f(a) - \varepsilon < f(x) < f(a) + \varepsilon \). \hspace{1cm} (1)

We will first find \(\delta \) such that

for all \(x \) in \(D \), if \(a - \delta < x < a + \delta \), then \(f(x) < f(a) + \varepsilon \). \hspace{1cm} (2)

A similar proof will show that we can find \(\delta \) such that for all \(x \) in \(D \), if \(a - \delta < x < a + \delta \), then \(f(x) \geq f(a) - \varepsilon \).

Then, choosing our “final” \(\delta \) to be the minimum of these two, we have found \(\delta > 0 \) which has the desired property.

If for every \(x \) in \(D \), \(f(x) \leq f(a) \), then any \(\delta > 0 \) will work to satisfy (2).

So, suppose there is an \(x_1 \) in \(D \) such that \(f(x_1) > f(a) \). By monotonicity, \(x_1 > a \).

Let \(y_\varepsilon = \min\{ f(a) + \varepsilon/2, f(x_1) \} \). Since \(f(a) < y_\varepsilon \leq f(x_1) \) (be sure you understand why) and \(f(D) \) is an interval, \(y_\varepsilon \) is an element of \(f(D) \) so we can find \(x_\varepsilon \) in \(D \) such that \(f(x_\varepsilon) = y_\varepsilon \).

By the monotonicity of \(f \), \(x_\varepsilon > a \). (why?).

Let \(\delta = x_\varepsilon - a \). Suppose \(x \) is in \(D \) and \(a - \delta < x < a + \delta \),

As noted above, for \(x \leq a \), \(f(x) \leq f(a) < f(a) + \varepsilon \).

For \(a < x < a + \delta \), we have \(f(x) \leq f(a + \delta) = f(x_\varepsilon) = y_\varepsilon \leq f(a) + \varepsilon/2 < f(a) + \varepsilon \).

Thus, condition (2) is satisfied for this choice of \(\delta \).