Let S be a set. An n-dimensional coordinate system on S is a one-to-one function mapping S onto an open subset of \mathbb{R}^n. If we denote such a function by $x : S \to U \subseteq \mathbb{R}^n$, then we can write $x = (x^1, x^2, \ldots, x^n)$, where for each i, x^i is a function from S into \mathbb{R}.

Let f be a function from S into \mathbb{R}^n. We say that f is C^∞ iff the composition $f \circ x^{-1} : U \to \mathbb{R}^n$ is C^∞. We denote by Φ the set of all REAL-valued C^∞ functions on S. Given such a function f and a coordinate system x on S, we define, for each point p in S, the partial derivatives of f with respect to the coordinate functions x^i:

$$\frac{\partial}{\partial x^i} f(p) = \partial_i (f \circ x^{-1})(x(p))$$

This derivative is also denoted by $\frac{\partial}{\partial x^i}_p f$.

NOTE. In more general situations, the set Φ is taken to be the set of all real-valued C^∞ functions defined in a neighborhood of p (or defined near p). Thus Φ is specifically associated with the point p, just as the partial derivative operators are associated with p.

EXERCISE 1. Show that the coordinate system x is a C^∞ function on S and that for each i, x^i is in Φ.

Fix a point p in S. It is easy to show that $\frac{\partial}{\partial x^i}_p$ is a linear operator on the vector space Φ of all C^∞ functions on S and that this operator has the following property: For all f and g in Φ,

$$\frac{\partial}{\partial x^i}_p (f g) = f(p) \frac{\partial}{\partial x^i}_p g + g(p) \frac{\partial}{\partial x^i}_p f$$

An operator v on Φ is called a **linear derivation** (or just a derivation) on Φ at p if v is linear and $v(fg) = f(p)v(g) + g(p)v(f)$ for all f and g in Φ.

EXERCISE 2. Verify that the operator $\frac{\partial}{\partial x^i}_p$ is a linear derivation on Φ at p.

EXERCISE 3. Verify that $\frac{\partial}{\partial x^i}_p (x^k) = \delta_{ik}$, where $\delta_{ik} = 0$ if $i \neq k$ and $\delta_{ik} = 1$ if $i = k$.

EXERCISE 4. Let $u = (u^1, u^2, \ldots, u^n)$ be an element of $U = \text{range}(x)$. Show that $x^i(x^{-1}(u)) = u^i$.

We also consider \(C^\infty \) parametrized paths, without (for convenience) making the “smoothness” assumption that the derivative is nonzero. Let \(I \) be a nontrivial \textbf{closed bounded} interval in \(\mathbb{R} \). We say that a one-to-one function \(\gamma : I \to S \) is a \(C^\infty \) \textbf{parametrized path} in \(S \) iff the composition \(x \circ \gamma : I \to \mathbb{R}^n \) is continuous of \(I \) and is \(C^\infty \) on the interior of \(I \).

EXERCISE 5. Show that \(\gamma : (a, b) \to S \) is a \(C^\infty \) parametrized path in \(S \) iff for each \(f \) in \(\Phi \), the composition \(f \circ \gamma \) is a \(C^\infty \) real-valued function on \((a, b) \). [This needs to be cleaned up to be consistent with definition above.]

Suppose \(\gamma \) is a \(C^\infty \) parametrized path such that \(\gamma(t_0) = p \), where \(t_0 \) is in the interior of the domain \(I \) of \(\gamma \). (So \(\gamma \) is a \(C^\infty \) parametrized path \textbf{through} \(p \).) Then the derivative \((f \circ \gamma)'(t_0) \) exists; this defines an operator \(D\gamma \) on \(\Phi \):

\[
D\gamma f = (f \circ \gamma)'(t_0).
\]

Think of \(D\gamma f \) as the directional derivative of \(f \) in the direction of the tangent vector to \(\gamma \) at the point \(p \). (Of course, this operator depends on the point \(p \), but since we are considering \(p \) fixed, we will at least temporarily ignore this in the notation \(D\gamma \).)

EXERCISE 6. Show that \(D\gamma \) is a linear derivation on \(\Phi \) at \(p \).

EXERCISE 7. For each index \(i, 1 \leq i \leq n \), find a \(C^\infty \) parametrized path \(\gamma^{(i)} \) through \(p \) such that

\[
D\gamma^{(i)} = \left. \frac{\partial}{\partial x_i} \right|_p.
\]

(Thus, as in \(\mathbb{R}^n \), partial derivatives are special cases of directional derivatives.)

EXERCISE 8. Show that (for \(\gamma \) as above, with \(\gamma(t_0) = p \))

\[
D\gamma = \sum_{i=1}^n (x^i \circ \gamma)'(t_0) \left. \frac{\partial}{\partial x_i} \right|_p
\]

EXERCISE 9. Show that, given \(u \) in \(\mathbb{R}^n \) and \(p \) in \(S \), there exists a \(C^\infty \) parametrized path \(\gamma \) in \(S \) through \(p \) such that \(D\gamma = \sum_{i=1}^n u^i \left. \frac{\partial}{\partial x^i} \right|_p \).

DEFINITION. We call \(D\gamma \) a \textbf{tangent vector} to \(S \) at \(p \). The collection of all such tangent vectors is called the \textbf{tangent space} to \(S \) at \(p \) and denoted by \(T_p(S) \).

THEOREM. \(T_p(S) \) is an \(n \)-dimensional vector space. The set of partial derivatives \(\left. \frac{\partial}{\partial x_i} \right|_p \) is a basis for \(T_p(S) \).

EXERCISE 10. Verify this Theorem. (Most of it follows from the preceding exercises.)